【题目】如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四边形ABCD的周长为32.
(1)求∠BDC的度数;
(2)四边形ABCD的面积.
【答案】
(1)解:∵AB=AD=8cm,∠A=60°,
∴△ABD是等边三角形,
∵∠ADC=150°
∴∠BDC=150°﹣60°=90°
(2)解:∵△ABD为正三角形,AB=8cm,
∴其面积为 × ×AB×AD=16 ,
∵BC+CD=32﹣8﹣8=16,且BD=8,BD2+CD2=BC2,
解得BC=10,CD=6,
∴直角△BCD的面积= ×6×8=24,
故四边形ABCD的面积为24+16
【解析】(1)先根据题意得出△ABD是等边三角形,△BCD是直角三角形,进而可求出BDC的度数;(2)根据四边形周长计算BC,CD,即可求△BCD的面积,正△ABD的面积根据计算公式计算,即可求得四边形ABCD的面积为两个三角形的面积的和.
【考点精析】利用勾股定理的概念对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
科目:初中数学 来源: 题型:
【题目】已知∠AOB=90°,是锐角,ON平分,OM平分∠AOB.
(1)如图1若=30°,求的度数?
(2)若射线OC绕着点O运动到∠AOB的内部(如图2),在(1)的条件下求的度数;
(3)若∠AOB=(90°≤<180°),= (0°<<90°),请用含有的式子直接表示上述两种情况的度数.
【答案】(1)60°;(2)30°;(3)①∠MON=(+),;②∠MON=(-).
【解析】试题分析:(1)由于∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,所以可以求得∠MOB和∠NOB的度数,进而求得∠MON的度数;(2)类比(1)的方法求解即可;(3)结合(1)(2)题的计算方法求解即可.
试题解析:
(1)∵OM平分∠AOB,ON平分∠BOC,
∴∠BOM=∠AOB,∠BON=∠BOC.
∵∠AOB=90°,∠BOC=30°,
∴∠BOM=×90°=45°,∠BON=×30°=15°,
∴∠MON=∠BOM+∠BON=45°+15°=60°.
(2)由(1)可知:∠BOM=45°,∠BON=15°,
∴∠MON=∠BOM-∠BON=45°-15°=30°.
(3)①∠MON=(+),②∠MON=(-).
点睛:本题主要考查学生角平分线的定义及角的计算的理解和掌握,在解决角与角之间的关系时,要充分利用已知条件和图中的隐含条件.
【题型】解答题
【结束】
27
【题目】(1)已知线段AB=8cm,在线段AB上有一点C,且BC=4cm,M为线段AC的中点.
①求线段AM的长?
②若点C在线段AB的延长线上,AM的长度又是多少呢?
(2)如图,AD=DB,E是BC的中点,BE=AC=2cm,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了开展阳光体育运动,让学生每天能锻炼一小时,某学校去体育用品商店购买篮球与足球,篮球每只定价100元,足球每只定价50元.体育用品商店向学校提供两种优惠方案:①买一只篮球送一只足球;②篮球和足球都按定价的80%付款.现学校要到该体育用品商店购买篮球30只,足球x只(x>30).
(1)若该学校按方案①购买,篮球需付款 元,足球需付款 元(用含x的式子表示);
若该学校按方案②购买,篮球需付款 元,足球需付款 元(用含x的式子表示);
(2)若x=40,请通过计算说明按方案①、方案②哪种方案购买较为合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知线段AB=12cm,点C为线段AB上的一动点,点D,E分别是AC和BC中点.
(1)若点C恰好是AB的中点,则DE=_______cm;
(2)若AC=4cm,求DE的长;
(3)试说明无论AC取何值(不超过12cm),DE的长不变;
(4)如图②,已知∠AOB=120°,过角的内部任一点C画射线OC.若OD,OE分别平分∠AOC和∠BOC.试说明∠DOE的度数与射线OC的位置无关.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=8,CF=6,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.
(1)求证:AP=CQ;
(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;
(3)在(2)的条件下,若AP=1,求PE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com