精英家教网 > 初中数学 > 题目详情
若∠OAB=30°,OA=10cm,则以O为圆心,6cm为半径的圆与直线AB的位置关系是(  )
A.相交B.相切C.相离D.不能确定
如图,作OD⊥AB,垂足为D,
∵∠OAB=30°,OA=10cm,
∴OD=5cm,
d=5cm<r=6cm,
∴直线AB与圆O相交.
故选A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的直线,垂足为D,且AC平分∠BAD.
(1)求证:CD是⊙O的切线;
(2)若AC=2
5
,CD=2,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下面的材料:
如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O于点C、D.
求证:AP•AC+BP•BD=AB2
证明:连接AD、BC,过P作PM⊥AB,则∠ADB=∠AMP=90°,
∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.
由割线定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
当点P在半圆周上时,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如图(2)当点P在半圆周外时,结论AP•AC+BP•BD=AB2是否成立?为什么?
(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在两个同心圆中,大圆的弦AB切小圆于C点,AB=12cm.求两个圆之间的圆环面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
求证:CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,圆心O在边长为
2
的正方形ABCD的对角线BD上,⊙O过B点且与AD、DC边均相切,则⊙O的半径是(  )
A.2(
2
-1)
B.2(
2
+1)
C.2
2
-1
D.2
2
+1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

含30°角的直角三角板ABC中,∠A=30°.将其绕直角顶点C顺时针旋转α角(0°<α<120°且α≠90°),得到Rt△A'B'C,A'C边与AB所在直线交于点D,过点D作DEA'B'交CB'边于点E,连接BE.
(1)如图1,当A'B'边经过点B时,α=______°;
(2)在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;
(3)设BC=1,AD=x,△BDE的面积为S,以点E为圆心,EB为半径作⊙E,当S=
1
3
S△ABC
时,求AD的长,并判断此时直线A'C与⊙E的位置关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图⊙O的两条弦AB、CD相交于点E,AC与DB的延长线交于点P,下列结论中成立的是(  )
A.CE•CD=BE•BAB.CE•AE=BE•DE
C.PC•CA=PB•BDD.PC•PA=PB•PD

查看答案和解析>>

同步练习册答案