精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AB=15,AC=8,AD是中线,且AD=8.5,则BC的长为


  1. A.
    15
  2. B.
    16
  3. C.
    17
  4. D.
    18
C
分析:延长AD至E使ED=AD,利用好AD是中线这个条件,再根据题中的数据的特点正好符合勾股定理逆定理,得到直角三角形,根据直角三角形斜边上的中线的性质就可以求出BD的长度了,再根据BC=2BD,所以BC的长也就求出了.
解答:解:延长AD至E,使DE=AD;连接BE,
∵AD=8.5,
∴AE=2×8.5=17,
在△ACD和△BED中,

∴△ACD≌△BED(SAS),
∴BE=AC=8,
BE2+AB2=82+152=289,
AE2=172=289,
所以∠ABE=90°,
∵在Rt△BED中,BD是中线,
∴BD=AE=8.5,
∴BC=2BD=2,8.5=17.
故选C.
点评:考查了勾股定理的逆定理,全等三角形的判定与性质和直角三角形斜边上的中线,作好辅助线,构造出直角三角形是解本题的关键,也是难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案