精英家教网 > 初中数学 > 题目详情
8.如图,已知△ABC的面积为36,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为(  )
A.8B.6C.9D.12

分析 连接EC,过A作AM∥BC交FE的延长线于M,求出平行四边形ACFM,根据等底等高的三角形面积相等得出△BDE的面积和△CDE的面积相等,△ADE的面积和△AME的面积相等,推出阴影部分的面积等于平行四边形ACFM的面积的一半,求出CF×hCF的值即可.

解答 解:连接EC,过A作AM∥BC交FE的延长线于M,
∵四边形CDEF是平行四边形,
∴DE∥CF,EF∥CD,
∴AM∥DE∥CF,AC∥FM,
∴四边形ACFM是平行四边形,
∵△BDE边DE上的高和△CDE的边DE上的高相同,
∴△BDE的面积和△CDE的面积相等,
同理△ADE的面积和△AME的面积相等,
即阴影部分的面积等于平行四边形ACFM的面积的一半,是$\frac{1}{2}$×CF×hCF
∵△ABC的面积是36,BC=3CF
∴$\frac{1}{2}$BC×hBC=$\frac{1}{2}$×3CF×hCF=36,
∴CF×hCF=24,
∴阴影部分的面积是$\frac{1}{2}$×24=12,
故选:D.

点评 本题考查了平行四边形的性质和判定,三角形的面积的应用,主要考查学生的推理能力和转化能力,题目比较好,但是有一定的难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.一个不等边三角形的边长都是整数,且周长是18,求该三角形三边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,A2在x轴上,依次进行下去….若点A(5,0),B(0,12),则点B2014的坐标为(12084,12).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.由4名同学每人写一个实系数一元二次方程,所得的四个方程中恰有两个无实数根的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{3}{8}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,抛物线y=ax2+bx+c与x轴交于点A(-2,0)和点B(6,0),与y轴交于点C(0,3),点D是抛物线上的点,且CD∥x轴,点E是抛物线的顶点.
(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线L,当L平移到何处时,恰好将△BCD的面积分为相等的两部分?
(3)点F在线段CD上,若以点C,E,F为顶点的三角形与△COE相似,试求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列等式:①2ab+3ab=5a2b2;②(-5a32=25a6;③$\sqrt{x+y}$=$\sqrt{x}$+$\sqrt{y}$.其中正确的等式有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知a、b为实数,关于x的方程|x2+ax+b|=2恒有三个不等的实数根.
(1)求b的最小值;
(2)若该方程的三个不等实根,恰为一个三角形三内角的度数,求证该三角形必有一个内角是60°
(3)若该方程的三个不等实根恰为一直角三角形的三条边,求a和b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知|ab-2|+|a-1|=0,则$\frac{1}{ab}$+$\frac{1}{(a+1)(b+1)}$+…+$\frac{1}{(a+2014)(b+2014)}$=$\frac{2015}{2016}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,菱形ABCD的边长为5,sin∠ABC=$\frac{4}{5}$,则对角线BD的长为4$\sqrt{5}$.

查看答案和解析>>

同步练习册答案