精英家教网 > 初中数学 > 题目详情

如图,抛物线y=数学公式x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)若点M(0,-4),动点P从M点出发,沿直线运动到该抛物线对称轴的某点E,再沿直线运动到x轴上某点F,最后沿直线运动到点C,求使点P运动的总路程最短的点E、点F的坐标,并求出这个最短路程的长.

解:(1)∵抛物线y=x2+bx-2经过A(-1,0),
∴0=-b-2,
解得:b=-
∴y=x2-x-2,
∵y=x2-x-2=(x2-3x)-2=(x-2-
∴顶点D的坐标为:(,-);

(2)当x=0,∴y=-2,
∴C点坐标为:(0,-2),
∴y=x2-x-2与x轴交于A、B,
∴0=x2-x-2,
解得:x1=-1,x2=4,
∴B点坐标为:(4,0),
∴AC 2=AO 2+CO2=1+4=5,
BC 2=BO 2+CO2=16+4=20,
AB 2=(AO+BO)2=25,
∴AC 2+BC 2=AB2
∴△ABC的形状是直角三角形;

(3)①作C关于x=的对称点C′,
M关于x轴对称点M′,连接M′C′交x轴于点F、抛物线对称轴于点E,
则有:MF+FE+EC为点P运动的最短路程,
求出直线M′C′:y=-2x+4,
求出点F(2,0),点E(,1),
最短路线为:3
②做M点关于抛物线对称轴的对称点M′(3,-4),
做C点关于x轴的对称点C′(0,2),
连接M'C',则M'C'长度即为所求最小长度3
M'C'与x轴交点为所求F点,
而M'C'与抛物线对称轴的交点为所求E点,
F点坐标(1,0),
E点坐标(1.5,-1).
分析:(1)利用待定系数法求二次函数解析式,进而利用配方法求出顶点坐标即可;
(2)根据点的坐标得出AC 2=AO 2+CO2=1+4=5,BC 2=BO 2+CO2=16+4=20,AB 2=(AO+BO)2=25,即可得出△ABC的形状;
(3)作C关于x=的对称点C′,M关于x轴对称点M′,连接M′C′交x轴于点F、抛物线对称轴于点E,利用勾股定理求出即可,或者做M点关于抛物线对称轴的对称点M′(3,-4),做C点关于x轴的对称点C′(0,2),连接M'C',进而得出即可.
点评:此题主要考查了二次函数的综合应用和最短路径问题以及直角三角形的判定方法等知识,根据已知结合图象得出最短路径求法是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,AO.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y
0(填“>”“=”或“<”号).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,抛物线y=x2+(k2+1)x+k+1的对称轴是直线x=-1,且顶点在x轴上方.设M是直线x=-1左侧抛物线上的一动点,过点M作x轴的垂线MG,垂足为G,过点M作直线x=-1的垂线MN,垂足为N,直线x=-1与x轴的交于H点,若M点的横坐标为x,矩形MNHG的周长为l.
(1)求出k的值;
(2)写出l关于x的函数解析式;
(3)是否存在点M,使矩形MNHG的周长最小?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•扬州)如图,抛物线y=x2-2x-8交y轴于点A,交x轴正半轴于点B.
(1)求直线AB对应的函数关系式;
(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=x2-2x-3与x轴分别交于A,B两点.
(1)求A,B两点的坐标;
(2)求抛物线顶点M关于x轴对称的点M′的坐标,并判断四边形AMBM′是何特殊平行四边形.(不要求说明理由)

查看答案和解析>>

同步练习册答案