精英家教网 > 初中数学 > 题目详情
3.如果点(-2,m)和($\frac{1}{2}$,n)都在直线y=$\frac{4}{3}$x+4上,则m,n的大小关系是:m<n.

分析 直接把点(-2,m)和($\frac{1}{2}$,n)代入直线y=$\frac{4}{3}$x+4,求出m与n的值,并比较出其大小即可.

解答 解:因为点(-2,m)和($\frac{1}{2}$,n)都在直线y=$\frac{4}{3}$x+4上,
所以m=$\frac{4}{3}×(-2)+4=\frac{4}{3}$,n=$\frac{4}{3}×\frac{1}{2}+4=4\frac{2}{3}$,
所以m<n,
故答案为:m<n.

点评 本题考查的是一次函数图象上点的坐标特点,.熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.如图,湖的两端有A,B两点,从与BA方向成直角的BC方向上的C点测得CA=130米,CB=120米,则AB为(  )
A.30米B.40米C.50米D.60米

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知三个自然数a,b,c中至少a为质数,且满足$\left\{\begin{array}{l}{(4a+2b-4c)^{2}=443(2a-442b+884c)}\\{\sqrt{4a+2b-4c+886}-\sqrt{442b-2a+2c-443}=\sqrt{443}}\end{array}\right.$,试求abc的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知(x-2)2+|y-3|=0,求$\frac{x-y}{{x}^{2}-2xy+{y}^{2}}-\frac{xy+{y}^{2}}{{x}^{2}-{y}^{2}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.用硬纸板剪一个平行四边形,做出它的对角线的交点O,用大头针把一根平放在平行四边形上的直细木条固定在点O处.若木条与AD交于点E、与BC交于点F,拨动细木条
(1)OE=OF吗?为什么?
(2)什么情况下ABFE为平行四边形?为什么?什么情况下ABFE为等腰梯形?为什么?
(3)什么情况下AFCE为菱形?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.因式分解:
(1)16x2-9y2
(2)a2(x-y)+b2(y-x)
(3)-x2y+8xy2-16y3
(4)x4-18x2+81.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列结论中,错误结论有(  )
①三角形三条高(或高的延长线)的交点不在三角形的内部,就在三角形的外部.
②一个多边形的边数每增加一条,这个多边形的内角和就增加360°.
③两条平行直线被第三条直线所截,同旁内角的角平分线互相平行.
④三角形的一个外角等于任意两个内角的和.
⑤在△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形.
⑥一个三角形中至少有两个锐角.
A.6个B.5个C.4个D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,AB为⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为P,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.
(1)若CD=2$\sqrt{3}$,BP=4,求⊙O的半径;
(2)求证:直线BF是⊙O的切线;
(3)当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?请在图2中补全图象并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在平面直角坐标系中,四边形ABCD的顶点均在网格点上,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是(  )
A.(6,1)B.(0,1)C.(0,-3)D.(6,-3)

查看答案和解析>>

同步练习册答案