精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB是⊙O的直径,BC为弦,过圆心O作OD⊥BC交弧BC于点D,连接DC,若∠DCB=32°,则∠BAC=

【答案】64°
【解析】解:∵∠BOD与∠BCD为 所对的圆心角和圆周角, ∴∠BOD=2∠BCD=64°,
∵AB为直径,∴AC⊥BC,
又∵OD⊥BC,∴AC∥OD,
∴∠BAC=∠BOD=64°,
所以答案是:64°.
【考点精析】本题主要考查了垂径定理和圆周角定理的相关知识点,需要掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图, ON 平分∠AOC,OM平分∠BOC

(1)∠AOB=90°∠AOC=50°,则∠MON= °;

(2)∠AOB=80°∠AOC=60°,则∠MON= °;

(3)探索:∠MON与∠AOB有何关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程
(1)解方程组:
(2)已知关于x的一元二次方程x2+2x﹣m=1有实数根,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC在平面直角坐标系中的位置如图所示.

(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;

(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(-2,b),求a+b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,要是四边形ABCD成为平行四边形,则应增加的条件是(
A.AB=CD
B.∠BAD=∠DCB
C.AC=BD
D.∠ABC+∠BAD=180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线ABy=-x-b分别与xy轴交于A60)、B两点,过点B的直线交x轴负半轴于C,且OBOC=31

1)求点B的坐标;

2)求直线BC的解析式;

3)直线EFy=2x-kk≠0)交ABE,交BC于点F,交x轴于点D,是否存在这样的直线EF,使得SEBD=SFBD?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2

(1)求y与x之间的函数关系式,并注明自变量x的取值范围;
(2)x为何值时,y有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCO为正方形,A点坐标为(0,2),点P为x轴负半轴上一动点,以AP为直角作等腰直角三角形APD,∠APD=90°(点D落在第四象限)

(1)当点P的坐标为(﹣1,0)时,求点D的坐标;
(2)点P在移动的过程中,点D是否在直线y=x﹣2上?请说明理由;
(3)连接OB交AD于点G,求证:AG=DG.

查看答案和解析>>

同步练习册答案