精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料:

在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x的分式方程的解为正数,求a的取值范围?

经过独立思考与分析后,小明和小聪开始交流解题思路如下:

小明说:解这个关于x的分式方程,得到方程的解为.由题意可得,所以,问题解决.

小聪说:你考虑的不全面.还必须保证才行.

请回答:_______________的说法是正确的,并说明正确的理由是:__________________.

完成下列问题:

(1)已知关于x的方程的解为非负数,求m的取值范围

(2)若关于x的分式方程无解.直接写出n的取值范围.

【答案】(1)见解析(2)见解析

【解析】

根据分式方程解为正数,且分母不为0判断即可;

(1)分式方程去分母转化为整式方程,由分式方程的解为非负数确定出m的范围即可.
(2) 分式方程去分母转化为整式方程,根据分式方程无解,得到有增根或整式方程无解,确定出n的范围即可.

小聪的说法是正确的,正确的理由是分式的分母不为0,,从而.

故答案为:小聪;分式的分母不为0,,从而.

(1)去分母得:m+x=2x6,

解得:x=m+6,

由分式方程的解为非负数,得到,且m+6≠3,

解得:

(2) 分式方程去分母得:32x+nx2=x+3,(n1)x=2,

由分式方程无解,得到x3=0,即x=3,

代入整式方程得:

n1=0时,整式方程无解,此时n=1,

综上,n=1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2013成都)若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,已知ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).

(1)画出ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标;

(2)画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,△CC1C2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线y= (k>0)经过Rt△OAB的直角边AB的中点C,与斜边OB相交于点D,若OD=1,则BD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A、B的坐标分别为A(6,0)、B(0,2),以AB为斜边在右上方作Rt△ABC.设点C坐标为(x,y),则(x+y)的最大值=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示ABC中ABC与ACB的平分线交于点O根据下列条件求出BOC的度数

1已知ABC+ACB=100°BOC=

2已知A=90°BOC的度数

3从上述计算中你能发现BOC与A的关系吗?请直接写出B0C与A的关系

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y= (k≠0)中k的值的变化情况是(
A.一直增大
B.一直减小
C.先增大后减小
D.先减小后增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】几何计算:

(1)如图已知AB=9cm,BD=3cm,CAB的中点求线段DC的长.

(2)如图,OE为∠AOD的平分线,∠COD=EOC,COD=15°,求:

①∠EOC的大小;

②∠AOD的大小.

查看答案和解析>>

同步练习册答案