【题目】如图,四边形ABCD是平行四边形,点A(2,0),B(6,2),C(6,6),
反比例函数y1=(x>0)的图象过点D,点P是一次函数y2=kx+3﹣3k(k≠0)的图象与该反比例函数图象的一个公共点.
(1)若一次函数y2=kx+3﹣3k的图象必经过点E,则E点坐标为______;
(2)对于一次函数y2=kx+3﹣3k(k≠0),当y随x的增大而增大时,点P横坐标a的取值范围是______.
【答案】(3,3)<a<3
【解析】
(1)由点A(2,0),B(6,2),C(6,6),可得D(2,4),可求反比例函数解析式,由一次函数y2=kx+3﹣3k的图象必经过点E,则与k无关,即k的系数为0即kx﹣3k=0,可求k,即可求E点坐标;
(2)由一次函数y2=kx+3﹣3k的图象必经过点E(3,3),且y随x的增大而增大,可得过E点垂直x轴和垂直y轴的两直线之间为一次函数图象,即可求交点P横坐标a的取值范围.
(1)∵一次函数y2=kx+3﹣3k的图象必经过点E,
∴kx﹣3k=0即x=3,
∴点E(3,3);
(2)∵四边形ABCD是平行四边形,点A(2,0),B(6,2),C(6,6),
∴D(2,4),
∵反比例函数y1=(x>0)的图象过点D,
∴m=2×4=8,
∴反比例函数解析式:y=,
∵一次函数y2=kx+3﹣3k的图象必经过点E(3,3),且y随x的增大而增大,
∴当x=3时,y=,
当y=3时,x=,
∴点P横坐标a的取值范围是<a<3,
故答案为:(1)(3,3);(2)<a<3.
科目:初中数学 来源: 题型:
【题目】某公司购进一种商品的成本为30元/kg,经市场调研发现,这种商品在未来90天的销售单价p(元/kg)与时间t(天)之间的相关信息如图,销售量y(kg)与时间t(天)之间满足一次函数关系,且对应数据如表,设第t天销售利润为w(元)
时间t(天) | 10 | 30 |
每天的销售量 y(kg) | 180 | 140 |
(1)分别求出售单价p(元/kg)、销售量y(kg)与时间t(天)之间的函数关系式;
(2)问:销售该商品第几天时,当天的销售利润最大?并求出最大利润;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.
(1)∠ACB= °,理由是: ;
(2)猜想△EAD的形状,并证明你的猜想;
(3)若AB=8,AD=6,求BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF
(2)若∠AEC=105°,求∠BCF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C为⊙O上一点,作CD⊥AB,垂足为D,E为弧BC的中点,连接AE、BE,AE交CD于点F.
(1)求证:∠AEC=90°﹣2∠BAE;
(2)过点E作⊙O的切线,交DC的延长线于G,求证:EG=FG;
(3)在(2)的条件下,若BE=4,CF=6,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知∠ABC和∠ACB的平分线相交于点O,∠BAC=80°,则∠BOC的度数是( )
A.130°B.120°C.100°D.90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)该班共有_____名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_____;
(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC和△BDE是等腰直角三角形,∠ABC=∠DBE=90°,点D在AC上.
(1)求证:△ABD≌△CBE;
(2)若DB=1,求AD2+CD2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1﹣S2+S3+S4等于_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com