【题目】正方形ABCD的边长为6cm,点E,M分别是线段BD,AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.
(1)如图①,若点M与点D重合,求证:AF=MN;
(2)如图②,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以cm/s的速度沿BD向点D运动,运动时间为ts.
①设BF=ycm,求y关于t的函数表达式;
②当BN=2AN时,连接FN,求FN的长.
【答案】见解析
【解析】试题分析:(1)根据四边形的性质得到AD=AB,∠BAD=90°,由垂直的定义得到∠AHM=90°,由余角的性质得到∠BAF=∠AMH,根据全等三角形的性质即可得到结论;
(2)①根据勾股定理得到BD=6,由题意得,DM=t,BE=t,求得AM=6-t,DE=6-t,根据相似三角形的判定和性质即可得到结论;
②根据已知条件得到AN=2,BN=4,根据相似三角形的性质得到BF=,由①求得BF=,得方程=,于是得到结论.
试题解析:
(1)证明:∵四边形ABCD为正方形,
∴AD=AB,∠DAN=∠FBA=90°.
∵MN⊥AF,
∴∠NAH+∠ANH=90°.
∵∠NDA+∠ANH=90°,
∴∠NAH=∠NDA,
∴△ABF≌△MAN,
∴AF=MN.
(2)①∵四边形ABCD为正方形,
∴AD∥BF,
∴∠ADE=∠FBE.
∵∠AED=∠BEF,
∴△EBF∽△EDA,
∴=.
∵四边形ABCD为正方形,
∴AD=DC=CB=6cm,
∴BD=6cm.
∵点E从点B出发,以cm/s的速度沿BD向点D运动,运动时间为ts,
∴BE=tcm,DE=(6-t)cm,
∴=,
∴y=.
②∵四边形ABCD为正方形,
∴∠MAN=∠FBA=90°.
∵MN⊥AF,
∴∠NAH+∠ANH=90°.
∵∠NMA+∠ANH=90°,
∴∠NAH=∠NMA.
∴△ABF∽△MAN,
∴=.
∵BN=2AN,AB=6cm,
∴AN=2cm.
∴=,
∴t=2,
∴BF==3(cm).
又∵BN=4cm,
∴FN==5(cm).
点睛: 本题主要考查正方形的性质和相似三角形、全等三角形的判定和性质、勾股定理等知识点的综合应用.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC于点D,点E为BC的中点,连接DE.
(1)求证:DE是半圆⊙O的切线;
(2)若∠BAC=30°,DE=2,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°…则AD2=_____,依此类推这样做的第n个菱形ABnCnDn的边ADn的长是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com