精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(3,0),B(-1,0),C(0,-3),顶点为D.
(1)求这个二次函数的解析式及顶点坐标;
(2)在y轴上找一点P(点P与点C不重合),使得∠APD=90°,求点P坐标;
(3)在(2)的条件下,将△APD沿直线AD翻折,得到△AQD,求点Q坐标.

解:(1)由题意,得,…
解得
所以这个二次函数的解析式为y=x2-2x-3…
顶点D的坐标为(1,-4)…
(2)解法一:设P(0,m)
由题意,得PA=,PD=,AD=2
∵∠APD=90°,∴PA2+PD2=AD2,即(2+(2=(22
解得m1=-1,m2=-3(不合题意,舍去)…
∴P(0,-1)…

解法二:
如图,作DE⊥y轴,垂足为点E,
则由题意,得 DE=1,OE=4…
由∠APD=90°,得∠APO+∠DPE=90°,
由∠AOP=90°,得∠APO+∠OAP=90°,
∴∠OAP=∠EPD
又∠AOP=∠OED=90°,
∴△OAP∽△EPD

设OP=m,PE=4-m
,解得m1=1,m2=3(不合题意,舍去)…
∴P(0,-1)…

(3)解法一:
如图,作QH⊥x轴,垂足为点H,易得PA=AQ=PD=QD=,∠PAQ=90°,
∴四边形APDQ为正方形,…
由∠QAP=90°,得∠HAQ+∠OAP=90°,由∠AOP=90°,得∠APO+∠OAP=90°,
∴∠OPA=∠HAQ,又∠AOP=∠AHQ=90°,PA=QA
∴△AOP≌△AHQ,∴AH=OP=1,QH=OA=3…
∴Q(4,-3)…
解法二:
设Q(m,n)…
则AQ==,QD==
解得(不合题意,舍去)…
∴Q(4,-3)…
分析:(1)将A、B、C三点坐标代入y=ax2+bx+c中,列方程组求a、b、c的值,得出二次函数解析式,根据顶点坐标公式求顶点坐标;
(2)设P(0,m),由勾股定理分别表示PA,PD,AD的长,由于∠APD=90°,在Rt△PAD中,由勾股定理列方程求m的值即可;
(3)作QH⊥x轴,垂足为点H,由勾股定理求出PA=PD=,又∠PAQ=90°,可证△PAD为等腰直角三角形,由翻折的性质可知四边形APDQ为正方形,得出△AOP≌△AHQ,利用线段相等关系求Q点坐标.
点评:本题考查了二次函数的综合运用.关键是由已知条件求二次函数解析式,由解析式求顶点坐标,利用勾股定理列方程或利用三角形相似,得出比例式,求出相关点的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案