【题目】当今社会手机越来越普及,有很多人开始过份依赖手机,一天中使用手机时间过长而形成了“手机瘾”.为了解我校初三年级学生的手机使用情况,学生会随机调查了部分学生的手机使用时间,将调查结果分成五类:A、基本不用;B、平均一天使用1~2小时;C、平均一天使用2~4小时;D、平均一天使用4~6小时;E、平均一天使用超过6小时.并用得到的数据绘制成了如下两幅不完整的统计图(图1、2),请根据相关信息,解答下列问题:
(1)将上面的条形统计图补充完整;
(2)若一天中手机使用时间超过6小时,则患有严重的“手机瘾”.我校初三年级共有1490人,试估计我校初三年级中约有多少人患有严重的“手机瘾”;
(3)在被调查的基本不用手机的4位同学中有2男2女,现要从中随机再抽两名同学去参加座谈,请你用列表法或树状图方法求出所选两位同学恰好是一名男同学和一位女同学的概率.
【答案】(1)见解析;(2)149人;(3).
【解析】试题分析:(1)根据A的人数是4,占8%,得出总人数,再用总人数、频率、频数、所占的百分比之间的关系,即可求出答案,从而补全统计图;
(2)由图知,患有严重的“手机瘾”的所占百分比是10%,所以1490人中有1490×10%=149人.
(3)根据题意先画树状图法分析所有等可能的出现结果,然后根据概率公式求出答案即可.
试题解析:
(1)4÷8%=50(人),则B为50-4-20-9-5=12,所以条形统计图B为12.
(2)1490×10%=149(人),所以患有严重的“手机瘾”的有149人
(3)列表如下
男1 | 男2 | 女1 | 女2 | |
男1 | (男1,男2) | (男1,女1) | (男1,女2) | |
男2 | (男1,男2) | (男2,女1) | (男2,女2) | |
女1 | (男1,女1) | (男2,女1) | (女1,女2) | |
女2 | (男1,女2) | (男2,女2) | (女1,女2) |
总有12种选法,其中一男一女的有8种,所以,选两名恰好是一男一女的概率是:P=.
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.
①作出△ABC关于x轴对称的△A1B1C1 , 并写出点C1的坐标;②在y轴上找点D,使得AD+BD最小,作出点D并写出点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A坐标为(6,0),点B在y轴的正半轴上,且 =24 ,
(1)求点B坐标;
(2)若点P从B出发沿y轴负半轴方向运动,速度每秒2个单位,运动时间t秒,△AOP的面积为S,求S与t的关系式,并直接写出t的取值范围;
(3)在(2)的条件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在线段AB的垂直平分线上是否存在点Q,使得△AOQ的面积与△BPQ的面积相等?若存在,求出Q点坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列解题过程,然后回答问题.
计算: ÷ ·(9-x2).
解:原式= ÷ ·(3-x)(3+x) 第一步
= · ·(3-x)(3+x) 第二步
=1. 第三步
(1)上述计算过程中,第一步使用的公式用字母表示为;
(2)第二步使用的运算法则用字母表示为;
(3)由第二步到第三步进行了分式的;
(4)以上三步中,第步出现错误,正确的化简结果是.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,等边三角形ABC中,点D在AB上(点D与点A,B不重合),DE⊥BC,垂足为E,点P在BC上,且DP∥AC,△B′DE′与△BDE关于DP对称.设BE=x,△B′DE′与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x<, ≤x<m与m≤x<n时,函数的解析式不同).
(1)填空:等边三角形ABC的边长为_____,图2中a的值为_____;
(2)求S关于x的函数关系式,并直接写出x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com