【题目】若a,b互为相反数,b,c互为倒数,且m的立方等于它本身.
(Ⅰ)求ac的值;
(Ⅱ)若a>1,且m<0,,求6(2a﹣S)+(S﹣2a)的值;
(III)若m≠0,试讨论:当x为有理数时,|x+m|﹣|x﹣m|是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
【答案】(Ⅰ)ac=-1;(Ⅱ);(Ⅲ)2.
【解析】
(Ⅰ)由题意可知:a+b=0,bc=1,m=0或1或-1,代入ac即可;
(Ⅱ)由m=-1,b<-1,将S进行化简即可;
(III)根据m=1和m=-1两种情况,分别由x的取值范围去掉绝对值符号,再由化简后的式子即可得到|x+m|-|x-m|有最大值为2.
解:由题意可知:a+b=0,bc=1,m=0或1或﹣1,
(Ⅰ)∵a+b=0,bc=1,
∴ac=(﹣b)c=﹣bc=﹣1;
(Ⅱ)∵m<0,
∴m=﹣1,
∵a>1,
∴b<﹣1,
∴=2a﹣3b﹣2(m﹣b)+(b+)=2a﹣3b﹣2m+2b+b+=2a﹣2m+,
∵m=﹣1,
∴S=2a+,
∴6(2a﹣S)+(S﹣2a)=12a﹣6S+S﹣2a=10a﹣5S=10a﹣10a﹣5×=;
(III)∵m≠0,
∴m=1或m=﹣1,
当m=1时,
|x+m|﹣|x﹣m|=|x+1|﹣|x﹣1|,
当x<﹣1时,|x+1|﹣|x﹣1|=﹣(x+1)+(x﹣1)=﹣2,
当﹣1≤x≤1时,|x+1|﹣|x﹣1|=(x+1)﹣(1﹣x)=2x,
当x>1时,|x+1|﹣|x﹣1|=(x+1)﹣(x﹣1)=2,
∴|x+m|﹣|x﹣m|的最大值是2;
当m=﹣1时,
|x+m|﹣|x﹣m|=|x﹣1|﹣|x+1|=﹣(|x+1|﹣|x﹣1|),
∴|x+m|﹣|x﹣m|的最大值是2;
综上所述,|x+m|﹣|x﹣m|的最大值是2.
科目:初中数学 来源: 题型:
【题目】某学校开展课外体育活动,决定开展:篮球、乒乓球、踢毽子、跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.
(1)样本中最喜欢篮球项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度;
(2)请把条形统计图补充完整;
(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:a、b、c满足a=-b,|a+1|+(c-4)2=0,请回答问题:
(1)请求出a、b、c的值;
(2)a、b、c所对应的点分别为A、B、C,P为数轴上一动点,其对应的数为x,若点P在线段BC上时,请化简式子:|x+1|-|1-x|+2|x-4|(请写出化简过程);
(3)若点P从A点出发,以每秒2个单位长度的速度向右运动,试探究当点P运动多少秒时,PC=3PB?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于任意有理数a,b,
定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算.例如,2⊙5=2(2+5)﹣1=13.
(Ⅰ)求[1⊙(﹣2)]⊙3的值;
(Ⅱ)对于任意有理教m,n请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m⊕n=_____.(用含m,n的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】广州火车南站广场计划在广场内种植A,B两种花木共 6600棵,若A花木数量是B花木数量的2倍少600棵.
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】建设银行的某储蓄员小张在办理业务时,约定存入为正,取出为负. 2019年10月29日,他先后办理了七笔业务: +2000元、-800元、+400元、-800元、+1400元、-1700元、-200元.
(1)若他早上领取备用金4000元,那么下班时应交回银行_________元钱.
(2)请判断在这七次办理业务中,小张在第_______次业务办理后手中现金最多,第_________次业务办理后手中现金最少.
(3)若每办一件业务,银行发给业务量的0.2%作为奖励,小张这天应得奖金多少元?
(4)若记小张第一次办理业务前的现金为0点,用折线统计图表示这7次业务办理中小张手中现金的变化情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=﹣x+4于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.
(1)求抛物线的表达式;
(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;
(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如图,线段AB=1=0﹣(﹣1);线段 BC=2=2﹣0;线段 AC=3=2﹣(﹣1)问题
①数轴上点M、N代表的数分别为﹣9和1,则线段MN= ;
②数轴上点E、F代表的数分别为﹣6和﹣3,则线段EF= ;
③数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为m,求m.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com