精英家教网 > 初中数学 > 题目详情

【题目】如图①,A、E、F、C在一条直线上,AE=CF,过E、F分别作DEAC,BFAC,若AB=CD.

(1)图①中有  对全等三角形,并把它们写出来  

(2)求证:BG=DG,AG=CG;

(3)若将ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.

【答案】(1)3对,△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD;(2)证明见解析;(3)成立,证明见解析.

【解析】

试题(1)利用A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,若AB=CD可判断全等三角形的个数.

(2)先根据DE⊥AC,BF⊥AC,AE=CF,求证△ABF≌△CDE,再求证△DEG≌△BFG,即可.

(3)先根据DE⊥AC,BF⊥AC,AE=CF,求证△ABF≌△CED,再求证△BFG≌△DEG,即可得出结论.

试题解析:(1)图①中有3对全等三角形,它们是△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD.

理由:∵DE⊥AC,BF⊥AC,

∴∠AFB=∠CED=90°

∵AE=CF,

∴AE+EF=CF+EF,

AF=CE,

Rt△ABFRt△CDE中,

∴Rt△ABF≌Rt△CED(HL),

∴ED=BF.

由∠AFB=∠CED=90°得DE∥BF,

∴∠EDG=∠GBF,

∵∠EGD和∠FGB是对顶角,ED=BF,

∴△DEG≌△BFG,

∴EG=FG,DG=BG,

∵∠AGB=∠CGD,

∴△AGB≌△CGD;

(2)∵DE⊥AC,BF⊥AC,

∴∠AFB=∠CED=90°

∵AE=CF,

∴AE+EF=CF+EF,

AF=CE,

Rt△ABFRt△CDE中,

∴Rt△ABF≌Rt△CED(HL),

∴ED=BF.

由∠AFB=∠CED=90°得DE∥BF,

∴∠EDG=∠GBF,

∵∠EGD和∠FGB是对顶角,ED=BF,

∴△DEG≌△BFG,

∴EG=FG,DG=BG,

(3)第(2)题中的结论成立,

理由:∵AE=CF,

∴AE-EF=CF-EF,即AF=CE,

∵DE⊥AC,BF⊥AC,

∴∠AFB=∠CED=90°,

Rt△ABFRt△CDE中,

∴Rt△ABF≌Rt△CED(HL),

∴BF=ED.

∵∠BFG=∠DEG=90°,

∴BF∥ED,

∴∠FBG=∠EDG,

∴△BFG≌△DEG,

∴FG=GE,BG=GD,

即第(2)题中的结论仍然成立.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°AE=1

1)求∠2∠3的度数;

2)求长方形纸片ABCD的面积S

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,要测量一幢楼CD的高度,在地面上A点测得楼CD的顶部C的仰角为30°,向楼前进50m到达B点,又测得点C的仰角为60°. 求这幢楼CD的高度(结果保留根号).

【答案】该幢楼CD的高度为25m .

【解析】试题分析:根据题意得出的度数,进而求出,进而利用求出即可.

试题解析:依题意,有

中, (m)

该幢楼CD的高度为25m .

型】解答
束】
23

【题目】如图,正方形ABCD中,EBD上一点,AE的延长线交CDF,交BC的延长线于GMFG的中点.

1)求证:① 1=2 ECMC.

2)试问当∠1等于多少度时,ECG为等腰三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导光盘行动,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.

1)这次被调查的同学共有 名;剩大量的扇形圆心角是

2)把条形统计图补充完整;

3)在被调查的学生中随机抽取一名恰巧是剩少量剩一半左右饭的概率多大;

4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】8个棱长为1的相同小立方块搭成的几何体如图所示:

(1)请画出它的三视图;

(2)请计算它的表面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在研究数学问题时遇到一个定义:将三个已经排好顺序的数:,称为数列.计算,将这三个数的最小值称为数列的最佳值.例如,对于数列23,因为,所以数列23的最佳值为

小明进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列23的最佳值为;数列32的最佳值为1.经过研究,小明发现,对于“23”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为.根据以上材料,回答下列问题:

1)求数列2的最佳值;

2)将1”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为     ,取得最佳值最小值的数列为      (写出一个即可);

3)将3这三个数按照不同的顺序排列,可得到若干个数列.若使数列的最佳值为1,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正比例函数的图象经过点(3,-6)

(1)求这个函数的表达式;

(2)在如图所示的直角坐标系中画出这个函数的图象;

(3)判断点A(4,-2)B(1.53)是否在这个函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用棋子摆成如图所示的“T”字图案.

1)摆成第一个“T”字需要多少枚棋子,第二个呢?按这样的规律摆下去,摆成第10“T”字需要多少枚个棋子?

2)第个需多少枚棋子?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两个木工组,甲组每天修理桌椅16套,乙组每天修理桌椅比甲组多8套.甲组单独修理完这些桌椅比乙组单独修理完多用20天.学校每天付甲组80元修理费,付乙组120元修理费.

1)该中学库存多少套桌椅?

2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天20元生活补助费.现有三种修理方案:

方案一,由甲组单独修理;

方案二,由乙组单独修理;

方案三,甲、乙两组同时修理.

你认为哪种方案省时又省钱?为什么.

查看答案和解析>>

同步练习册答案