精英家教网 > 初中数学 > 题目详情

【题目】小明在研究数学问题时遇到一个定义:将三个已经排好顺序的数:,称为数列.计算,将这三个数的最小值称为数列的最佳值.例如,对于数列23,因为,所以数列23的最佳值为

小明进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列23的最佳值为;数列32的最佳值为1.经过研究,小明发现,对于“23”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为.根据以上材料,回答下列问题:

1)求数列2的最佳值;

2)将1”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为     ,取得最佳值最小值的数列为      (写出一个即可);

3)将3这三个数按照不同的顺序排列,可得到若干个数列.若使数列的最佳值为1,求的值.

【答案】10;(21-31-61-3-6.;(3a=812410

【解析】

1)根据上述材料给出的方法计算相应的最佳值即可;

2)要使数列的最佳值最小,就要使前两个数的和的绝对值最小,最小只能为,由此可以得出答案;

3)分情况建立方程,求得a的数值即可.

1)解:因为,所以数列2的最佳值为0

(2)要使数列的最佳值最小,就要使前两个数的和的绝对值最小,最小只能为

数列的最佳值的最小值为:,数列可以为:-31-61-3-6.

故答案为:1-31-61-3-6.

3)当时,则,不符合题意;

时,则

时,则

所以a=812410

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A、B、C、D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C、D、E为顶点的三角形与ABC相似,则点E的坐标不可能是(

A.(4,2) B.(6,0) C.(6,3) D.(6,5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,EBD上一点,AE的延长线交CDF,交BC的延长线于GMFG的中点.

1)求证:① 1=2 ECMC.

2)试问当∠1等于多少度时,ECG为等腰三角形?请说明理由.

【答案】1①证明见解析;②证明见解析;(2)当∠1=30°时,ECG为等腰三角形. 理由见解析.

【解析】试题分析:1①根据正方形的对角线平分一组对角可得然后利用边角边定理证明再根据全等三角形对应角相等即可证明;
②根据两直线平行,内错角相等可得 再根据直角三角形斜边上的中线等于斜边的一半可得然后据等边对等角的性质得到,所以 然后根据即可证明 从而得证;
2)根据(1)的结论,结合等腰三角形两底角相等 然后利用三角形的内角和定理列式进行计算即可求解.

试题解析:(1)证明:①∵四边形ABCD是正方形,

∴∠ADE=CDEAD=CD

在△ADE与△CDE,

∴△ADE≌△CDE(SAS)

∴∠1=2

②∵ADBG(正方形的对边平行)

∴∠1=G

MFG的中点,

MC=MG=MF

∴∠G=MCG

又∵∠1=2

∴∠2=MCG

ECMC

2)当∠1=30°时, 为等腰三角形. 理由如下:

要使为等腰三角形,必有

∴∠1=30°.

型】解答
束】
24

【题目】如图,已知抛物线经过原点O和点A,点B(2,3)是该抛物线对称轴上一点,过点BBCx轴交抛物线于点C,连结BOCA,若四边形OACB是平行四边形.

1 直接写出AC两点的坐标;② 求这条抛物线的函数关系式;

2)设该抛物线的顶点为M,试在线段AC上找出这样的点P,使得PBM是以BM为底边的等腰三角形并求出此时点P的坐标;

3)经过点M的直线把□ OACB的面积分为1:3两部分,求这条直线的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D上一点,点C在直径BA的延长线上,且

判断直线CD的位置关系,并说明理由.

过点B作的切线交CD的延长线于点E,若,求的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,A、E、F、C在一条直线上,AE=CF,过E、F分别作DEAC,BFAC,若AB=CD.

(1)图①中有  对全等三角形,并把它们写出来  

(2)求证:BG=DG,AG=CG;

(3)若将ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线与双曲线交于两点,且点的坐标为,将直线向上平移个单位,交双曲线于点,交轴于点,且的面积是.给出以下结论:(1;(2)点的坐标是;(3;(4.其中正确的结论有  

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】幸福是奋斗出来的,在数轴上,若CA的距离刚好是3,则C点叫做A幸福点,若CA、B的距离之和为6,则C叫做A、B幸福中心

(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是   

(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是   (填一个即可);

(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是AB的幸福中心?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数的图象交于A-2-1)、B1n)两点。

(1)利用图中条件求反比例函数和一次函数的解析式;

(2)根据图象写出使一次函数的值大于反比例函数的值的的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路上有AB两地.甲、乙两人同时出发,甲骑电动车从A地匀速前往B地,行走到一半路程时出现故障后停车维修,修好车后以原速继续行驶到B地;乙骑摩托车从B地匀速前往A地,到达A地后立即按原路原速返回,结果两人同时到B.甲、乙两人与B地的距离y(km)与乙行驶时间x(h)之间的函数图象如图所示.

1)求甲修车前的速度.

2)求甲、乙第一次相遇的时间.

3)若两人之间的距离不超过10km时,能够用无线对讲机保持联系,请直接写出乙在行进中能用无线对讲机与甲保持联系的x取值范围.

查看答案和解析>>

同步练习册答案