精英家教网 > 初中数学 > 题目详情
12.计算下列各式
(1)(-2a2b)2•3ab3÷(-6a3b)
(2)(5mn2-4m2n)(-2mn)
(3)20102-2009×2011(利用公式)  
(4)(2x+3)(x-4)-2(x+2)(x-3)

分析 根据整式的混合运算可以将题目中的问题进行解答,第(3)个式子可以通过变形,利用平方差公式进行计算.

解答 解:(1)(-2a2b)2•3ab3÷(-6a3b)
=4a4b2×3ab3÷(-6a3b)
=-(4×3÷6)a4+1-3b2+3-1
=-2a2b4
(2)(5mn2-4m2n)(-2mn)
=5mn2×(-2mn)-4m2n×(-2mn)
=-10m2n3+8m3n2
(3)20102-2009×2011(利用公式)
=20102-(2010-1)(2010+1)
=20102-(20102-1)
=20102-20102+1
=1;
(4)(2x+3)(x-4)-2(x+2)(x-3)
=2x2-5x-12-(2x2-2x-12)
=2x2-5x-12-2x2+2x+12
=-3x.

点评 本题考查整式的混合运算,解题的关键是明确同底数幂的乘除法法则,平方差公式的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.某地区居民生活用电基本价格为0.40元/千瓦时,若每月的用电量超过a千瓦时,则超出部分按基本电价的120%收费.
(1)某用户8月份用电84千瓦时,共交电费33.52元,求a的值;
(2)若该用户9月份的平均电费为0.42元/千瓦时,则9月份该用户共用电多少千瓦时?应交电费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若3pmq4与5pqn是同类项,则m+n=5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,抛物线${y_1}=-\frac{1}{4}{x^2}+\frac{1}{4}x+3$与直线${y_2}=-\frac{1}{4}x-\frac{3}{4}$交于A、B两点,则使y1≥y2成立的x取值范围是-2≤x≤5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.分解因式 
(1)4x2+4x+1                 
(2)2x2-18
(3)y3-2y2+y                         
(4)4a2-(b+c)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知数a、b的对应点在数轴上的位置如图所示,则a-3<b-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.在△ABC中,∠C=90°,AC=1,BC=2,则sinA=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,已知AB∥CD∥EF,那么下列结论不正确的是(  )
A.$\frac{AD}{DF}=\frac{BC}{CE}$B.$\frac{BC}{CE}$=$\frac{DF}{AD}$C.$\frac{CE}{EB}=\frac{DF}{AF}$D.$\frac{BC}{BE}=\frac{AD}{AF}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,点O为优弧ACB所在圆的圆心,∠AOC=100°,点D在AB的延长线上,BD=BC,则∠D=25°.

查看答案和解析>>

同步练习册答案