精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与y

轴相交于负半轴。给出四个结论:①;②;③;④ ,其中正确结论的序

号是___________

【答案】②③④.

【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

解:(1)①由抛物线的开口方向向上可推出a>0,正确;
②因为对称轴在y轴右侧,对称轴为x=->0,又因为a>0,∴b<0,错误;
③由抛物线与y轴的交点在y轴的负半轴上,∴c<0,错误;
④由图象可知:当x=1时y=0,∴a+b+c=0,正确.
故(1)中,正确结论的序号是①④.
(2)①∵a>0,b<0,c<0,∴abc>0,错误;
②由图象可知:对称轴x=->0且对称轴x=-<1,∴2a+b>0,正确;
③由图象可知:当x=-1时y=2,∴a-b+c=2,当x=1时y=0,∴a+b+c=0;
a-b+c=2与a+b+c=0相加得2a+2c=2,解得a+c=1,正确;
④∵a+c=1,移项得a=1-c,又∵c<0,∴a>1,正确.
故(2)中,正确结论的序号是②③④.

“点睛”二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=-判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB4AC3

1)试在AB上确定点D的位置,ACD∽△ABC

2)试在AC的延长线上确定点E的位置,使AEB∽△ABC,此时BEDC有怎样的位置关系?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;(2)在点A和大树之间选择一点B(A,B,D在同一直线上),测得由点B看大树顶端C的仰角恰好为45°;(3)量出A,B两点间的距离为4.5米.请你根据以上数据求出大树CD的高度.(精确到0.1米)(可能用到的参考数据sin35°≈0.57cos35°≈0.82,tan35°≈0.70)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

50

60

70

销售量y(千克)

100

80

60

(1)求yx之间的函数表达式;

(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?

(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yx2mx+m2

1)求证:不论m为任何实数,此二次函数的图象与x轴都有两个交点;

2)当二次函数的图象经过点(36)时,确定m的值,并写出此二次函数与坐标轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:相似三角形对应边上的中线之比等于相似比.

要求:①根据给出的△ABC及线段A'B′,A′(A′=A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;

②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=(t+1)x2+2(t+2)x+x=0x=2时的函数值相等

(1)求二次函数的解析式,并作图象;

(2)若一次函数y=kx+6的图象与二次函数的象都经过点A(3m),求mk的值.

查看答案和解析>>

同步练习册答案