【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.
【答案】(1)y=﹣2x+200 (40≤x≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x≤80.
【解析】试题分析:(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;
(2)根据题意可以写出W与x之间的函数表达式;将其化为顶点式,求出售价为多少元时获得最大利润,最大利润是多少.
(3)令,求出此时的的值,然后根据抛物线的性质求解即可.
试题解析:(1)设
将(50,100)、(60,80)代入,得:
,
解得:
∴
(2)
∴当x=70时,W取得最大值为1800,
答:售价为70元时获得最大利润,最大利润是1800元.
(3)当时,得:
解得:x=55或x=85,
∵该抛物线的开口向上,
所以当时,
又∵每千克售价不低于成本,且不高于80元,即
∴该商品每千克售价的取值范围是
科目:初中数学 来源: 题型:
【题目】如图,某日的钱塘江观潮信息如图:
按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c(b,c是常数)刻画.
(1)求m的值,并求出潮头从甲地到乙地的速度;
(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t﹣30),v0是加速前的速度).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系平面内,函数y=(x>0,m是常数)的图象经过A(1,4)、B(a,b),其中a>1,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD,AB,DC,CB.
(1)求反比例函数解析式;
(2)当△ABD的面积为S,试用a的代数式表示求S.
(3)当△ABD的面积为2时,判断四边形ABCD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)2+(﹣1)=_____.
(2)(﹣2008)×0=_____.
(3)=_____.
(4)=_____.
(5)2a2﹣3a2=_____.
(6)﹣2(x﹣1)=_____.
(7)方程7x=﹣2的解x=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于反比例函数,下列说法中不正确的是( )
A. 图像经过点(1.-2)
B. 图像分布在第二第四象限
C. x>0时,y随x增大而增大
D. 若点A()B()在图像上,若,则
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:点A、B在数轴上分别表示有理数a、b,表示A、B两点之间的距离。当A、B两点中有一点在原点时(假设A在原点),如图①,;
当A、B两点都在原点右侧时,如图②,;
当AB两点都在原点左侧时,如图③,;
当AB两点在原点两侧时,如图④,;
请根据上述结论,回答下列问题:
(1)数轴上表示2和5的两点问距离是______,数轴上表示2和-6的两点间距高是_________,数轴上表示-1和3的两点间距离是____________.
(2)数轴上表示x和-1的两点A和B之间的距离可表示为_________,若|AB|=2,则x的值为_____________.
(3)当取最小值时,请写出所有符合条件的x的整数值_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了迎接期中考试,小强对考试前剩余时间作了一个安排,他把计划复习重要内容的时间用一个四边形圈起来.如图,他发现,用这样的四边形圈起来五个数的和恰好是5的倍数,他又试了几个位置,都符合这样的特征。
(1)若设这五个数中间的数为a,请你用整式的加减说明其中的道理.
(2)这五个数的和能为150吗?若能,请写出中间那个数,若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=-3x+3与坐标轴分别交于A,B两点,以线段AB为边,在第一象限内作正方形ABCD,直线y=3x-2与y轴交于点F,与线段AB交于点E,将正方形ABCD沿x轴负半轴方向平移a个单位长度,使点D落在直线EF上.有下列结论:①△ABO的面积为3;②点C的坐标是(4,1);③点E到x轴距离是;
④a=1.其中正确结论的个数是( )
A. 4个B. 3个C. 2个D. 1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com