精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系平面内,函数y=x0m是常数)的图象经过A14)、Bab),其中a1,过点Ax轴的垂线,垂足为C,过点By轴的垂线,垂足为D,连接ADABDCCB

1)求反比例函数解析式;

2)当ABD的面积为S,试用a的代数式表示求S

3)当ABD的面积为2时,判断四边形ABCD的形状,并说明理由.

【答案】1)反比例函数解析式为y=;(2S=2a2;(3)四边形ABCD为菱形,理由见解析.

【解析】试题分析:(1)A14)代入y=,用待定系数法求解即可;

2Bab)代入1)中求得解析式中,求出ba的关系,根据三角形的面积公式列式即可;

3)把S=2代入(2)中的解析式中,求出a的值,可知四边形ABCD的对角线互相垂直平分,从而可证明四边形ABCD为菱形.

解:(1)把A14)代入y=m=1×4=4

所以反比例函数解析式为y=

2)把Bab)代入y=b=

所以S=a4﹣=2a﹣2

3)四边形ABCD为菱形.理由如下:

S=2时,2a﹣2=2,解得a=2

所以ACBD互相垂直平分,

所以四边形ABCD为菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线x轴、y轴分别交于点A和点B,点C在线段AB上,点Dy轴的负半轴上,CD两点到x轴的距离均为2

1)点C的坐标为    ,点D的坐标为     

2)点P为线段OA上的一动点,当PC+PD最小时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ACBAED都为等腰直角三角形,∠AED=ACB=90°,点DAB上,连CEMN分别为BDCE的中点.

1)求证:MNCE

2)如图2AEDA点逆时针旋转30°,求证:CE=2MN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(如图1所示)在ABC中,∠ACB=90°A=30°BC=4,沿斜边AB的中线CD把这个三角形剪成AC1D1BC2D2两个三角形(如图2所示).将AC1D1沿直线D2B方向平移(点AD1D2B始终在同一直线上),当点D1于点B重合时,平移停止.设平移距离D1D2xAC1D1BC2D2的重叠部分面积为y,在yx的函数图象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正比例函数y1mx的图象与反比例函数y2(m为常数,m≠0)的图象有一个交点的横坐标是2

(1)m的值;

(2)写出当y1y2时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为acm的正方形内,截去两个以正方形的边长acm为直径的半圆.(以下结果保π)

(1)图中阴影部分的周长为______cm

(2)图中阴影部分的面积为________cm2

(3)a2时,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

50

60

70

销售量y(千克)

100

80

60

(1)求yx之间的函数表达式;

(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?

(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,等腰△ABC中,AC=BC,点OAB边上,以O为圆心的圆经过点C,交AB边于点D,EF为⊙O的直径,EFBC于点G,且D的中点.

(1)求证:AC是⊙O的切线;

(2)如图2,延长CB交⊙O于点H,连接HDOE于点P,连接CF,求证:CF=DO+OP;

(3)在(2)的条件下,连接CD,若tanHDC=,CG=4,求OP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D是△ABC内一点,点EFGH分别是ABACCDBD的中点。

1)求证:四边形EFGH是平行四边形;(2)已知AD6BD4CD3,∠BDC90°,求四边形EFGH的周长。

查看答案和解析>>

同步练习册答案