精英家教网 > 初中数学 > 题目详情

【题目】一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图所示,试根据图象,回答下列问题:

(1)慢车比快车早出发______小时,快车追上慢车时行驶了_____千米,快车比慢车早______小时到达B地;

(2)求慢车、快车的速度;

(3)快车追上慢车需几个小时?

【答案】(1)22764(2)快车速度为69km/h,慢车速度为46km/h(3)快车追上慢车需4小时.

【解析】

1)根据图中,快,慢车的函数图象可得出结果.
2)根据速度=路程÷时间,即可求出两车的速度.
3)有了(2)中求出的两车的速度,用相遇时的路程除以快车的速度即可.

(1) 慢车比快车早出发2小时,快车追上慢车时行驶了276千米,快车比慢车早4小时到达B地;

故答案为:22764

(2)快车:km/h

慢车:km/h

答:快车速度为69km/h,慢车速度为46km/h.

(3)(小时)

答:快车追上慢车需4小时.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个钢筋三角架三边长分别为20cm50cm60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm50cm的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ).

A. 一种 B. 两种 C. 三种 D. 四种

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

平均成绩

中位数

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

(注:方差公式 .)
(1)完成表中填空①;②
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩的方差为 ,你认为推荐谁参加比赛更合适,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读与应用:
阅读1:a、b为实数,且a>0,b>0,因为 ,所以 ,从而 (当a=b时取等号).
阅读2:函数 (常数m>0,x>0),由阅读1结论可知: ,所以当 时,函数 的最小值为
阅读理解上述内容,解答下列问题:
(1)问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为 ,周长为 ,求当x=时,周长的最小值为
(2)问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=时, 的最小值为
(3)问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ACBD交于点OBDAD于点D,将ABD沿BD翻折得到EBD,连接ECEB

1)求证:四边形DBCE是矩形;

2)若BD=4AD=3,求点OAB的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰中, 底角为,动点从点向点运动,当是直角三角形是长为(

A.4B.23C.34D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.

(1)试判断直线AB与直线CD的位置关系,并说明理由;

(2)如图2,∠BEF与∠EFD的角平分线交于点P,EPCD交于点G,点HMN上一点,且GH⊥EG,求证:PF∥GH;

(3)如图3,在(2)的条件下,连接PH,KGH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,的四个顶点分别为

1)作,使它与关于原点成中心对称.

2)作的两条对角线的交点关于轴的对称点,点的坐标为_______

3)若将点向上平移个单位,使其落在内部(不包括边界),则的取值范围是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y),从加热开始计算的时间为xmin).据了解,当该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃

1)分别求出将材料加热和停止加热进行操作时,yx的函数关系式;

2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?

查看答案和解析>>

同步练习册答案