【题目】为了美化校园,某校要在如图①所示的长,宽的矩形地面上修等宽的人行道,余下的部分进行绿化.
(1)设人行道宽为,用含的式子表示绿化面积;
(2)如果要使绿化面积为,求出此时人行道的宽;
(3)已知某园林公司修筑人行道、绿化的造价(元)、(元)与修建面积之间的函数关系如图②所示,如果该校决定由该公司承建此项目,并要求修建的人行道的宽度不少于且不超过,那么人行道宽为多少时,修建的人行道和绿化的总造价最低,最低总造价为多少元?
【答案】(1);(2)人行道的宽为;(3)当人行道宽为时,修建的人行道和绿化的总造价最低,最低为31360元.
【解析】
(1)根据图1列式即可;
(2)令,然后求得x的值即可;
(3) 设修建的人行道和绿化的总造价为元.则由题意得,然后再求得,进而求得b的最大值和最小值;最后分和两种情况解答即可.
解:(1)设人行道宽为,则绿化的面积为;
(2)根据题意,得,
解得:,(舍去),故人行道的宽为;
(3)设修建的人行道和绿化的总造价为元.由题图可知:,
当时,设,将(400,24000)和(600,31000)代入得,
解得,
,
设绿化的面积为,则人行道的面积为,
,,
当时,,当时,,因此,,
于是分两种情况:
①当时,
,
,随的增大而增大,
当时,最小,.此时,
解得或(舍去),
因此,当,人行道宽为时,修建的人行道和绿化的总造价最低,最低为31360元;
②当时,
,
,随的增大而减小,
当时,最小,.
此时,解得:或(舍去),
因此,当,人行道宽为时,修建的人行道和绿化的总造价最低,最低为33135元,
,
当人行道宽为时,修建的人行道和绿化的总造价最低,最低为31360元.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,为坐标原点,抛物线交轴于点,交轴于点.
(1)如图1,求抛物线的解析式;
(2)如图2,点为抛物线上一点,连接并延长交轴于点,若点的横坐标为4,求的面积;
(3)如图3,点为对称轴右侧第四象限抛物线上一点,连接并延长交轴于点,过点作交轴于点.连接,过点作交延长线于点,当时,延长交抛物线于点,点在直线上,连接,交线段于点,将射线绕点逆时针旋转45°,得到射线交线段于点,交直线于点,若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了解学生每天完成家庭作业所用时间的情况,随机抽取了部分学生进行调查,并将所得数据进行整理,制作成条形统计图和扇形统计图如下:
(1)扇形统计图中扇形的圆心角的度数为______;
(2)补全条形统计图;
(3)若该中学有2000名学生,请估计有多少名学生能在1.5小时以内完成家庭作业?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.
根据以上信息解答下列问题:
(1)这次接受调查的市民总人数是 ;请补全条形统计图;
(2)扇形统计图中,“电视”所对应的圆心角的度数是 ;
(3)若该市约有90万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,和的平分线相交于点,过点作交于点,交于点,交于点,连接.给出以下四个结论:
①若,;
②;
③平分;
④若,,则.
其中正确的有________.(把所有正确结论的序号都选上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:
第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);
第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;
第三步:如图③,将MN左侧纸片绕G点按顺时针旋转180,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片(裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值为___cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的两个图形K1和K2,给出如下定义:点G为图形K1上任意一点,点H为K2图形上任意一点,如果G,H两点间的距离有最小值,则称这个最小值为图形K1和K2的“近距离”。如图1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),边长为的正方形PQMN,对角线NQ平行于x轴或落在x轴上.
(1)填空:
①原点O与线段BC的“近距离”为 ;
②如图1,正方形PQMN在△ABC内,中心O’坐标为(m,0),若正方形PQMN与△ABC的边界的“近距离”为1,则m的取值范围为 ;
(2)已知抛物线C:,且-1≤x≤9,若抛物线C与△ABC的“近距离”为1,求a的值;
(3)如图2,已知点D为线段AB上一点,且D(5,-2),将△ABC绕点A顺时针旋转α(0<α≤180),将旋转中的△ABC记为△AB’C’,连接DB’,点E为DB’的中点,当正方形PQMN中心O’坐标为(5,-6),直接写出在整个旋转过程中点E运动形成的图形与正方形PQMN的“近距离”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:
(1)本次抽样调查测试的建档立卡贫困户的总户数______.
(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.
(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?
(4)调查人员想从5户建档立卡贫困户(分别记为)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究:
如图1,抛物线与轴交于两点(点在点的左侧),顶点为,为对称轴右侧抛物线的一个动点,直线与轴于点,过点作,交轴于点.
(1)求直线的函数表达式及点的坐标;
(2)如图2,当轴时,将以每秒1个单位长度的速度沿轴的正方向平移,当点与点重合时停止平移.设平移秒时,在平移过程中与四边形重叠部分的面积为,求关于的函数关系式,并写出自变量的取值范围;
(3)如图3,过点作轴的平行线,交直线于点,直线与交于点,设点的横坐标为.
①当时,求的值;
②试探究点在运动过程中,是否存在值,使四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com