分析 作AB关于直线CB的对称线段A′B,交半圆于D′,连接AC、CA′,构造全等三角形,然后利用勾股定理、割线定理解答.
解答
解:如图,∵$\frac{AD}{DB}$=$\frac{2}{3}$,AB=10,
∴AD=4,BD=6,
作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,
可得A、C、A′三点共线,
∵线段A′B与线段AB关于直线BC对称,
∴AB=A′B,
∴AC=A′C,AD=A′D′=4,A′B=AB=10.
而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.
则A′C2=20,
又∵A′C2=A′B2-CB2,
∴20=100-CB2,
∴BC=4$\sqrt{5}$.
故答案为:4$\sqrt{5}$.
点评 考查了翻折变换(折叠问题),此题将翻折变换、勾股定理、割线定理相结合,考查了同学们的综合应用能力,要善于观察图形特点,然后做出解答.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com