精英家教网 > 初中数学 > 题目详情
13.已知一次函数y=-mx+4和y=3x-n的图象交于点P(3,1),则关于x的方程组$\left\{\begin{array}{l}{mx+y=4}\\{3x-y=n}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$.

分析 根据方程组的解即为函数图象的交点坐标解答.

解答 解:∵一次函数y=-mx+4和y=3x-n的图象交于点P(3,1),
∴方程组 $\left\{\begin{array}{l}{mx+y=4}\\{3x-y=n}\end{array}\right.$的解是 $\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$;
故答案为:$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$

点评 本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.在△ABC中,AB=AC=5,BC=6.⊙O经过B、C两点,且AO=3,则⊙O的半径为$\sqrt{10}$或$\sqrt{58}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查,我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A.非常喜欢”、“B.比较喜欢”、“C.不太喜欢”、“D.很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下三幅不完整的统计图表.
喜欢程度频数
A18
B66
C30
D6
请你根据以上提供的信息,解答下列问题:
(1)补全上面的频数分布表和扇形统计图;
(2)根据补全的频数分布表画出频数分布直方图;
(3)若该校七年级共有600名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在△ABC中,AB=5cm,BC=8cm,BC边上的中线AD=3cm,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.
(1)发现
①线段DE、BG之间的数量关系是DE=BG;
②直线DE、BG之间的位置关系是DE⊥BG.
(2)探究
如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)应用
如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在⊙O中,AC是弦,AD是切线,CB⊥AD于B,CB与⊙O相交于点E,连接AE,若AE平分∠BAC,BE=1,则CE=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)求不等式组$\left\{\begin{array}{l}{\frac{x-1}{2}>0…①}\\{5x-2≤3(x+2)…②}\end{array}\right.$的整数解.
(2)认真阅读下列分解因式的过程,再回答所提出的问题:
1+x+x(1+x)+x(1+x)2
=(1+x)[1+x+x(1+x)]
=(1+x)2(1+x)
=(1+x)3
①上述分解因式的方法是提取公因式;
②分解因式:1+x+x(1+x)+x(1+x)2+x(1+x)3
③猜想:1+x+x(1+x)+x(1+x)2+…+x(1+x)n分解因式的结果是(1+x)n+1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,?ABCD中,E为AD的中点,直线BE、CD相交于点F.连接AF、BD.
(1)求证:AB=DF;
(2)若AB=BD,求证:四边形ABDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.箱子里放有3个黑球和2个红球,它们除颜色外其余都相同.现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案