【题目】如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB=90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.
【答案】△EMC的形状是等腰直角三角形,理由见解析;
【解析】
△EMC的形状是等腰直角三角形,求出∠DAB=90°,AD=AB,推出AM⊥BD,AM=BM=DM,求出∠MBC=∠MAE,BM=AM,证△BCM≌△AEM,推出EM=CM,∠3=∠2,求出∠1+∠3=90°即可.
△EMC的形状是等腰直角三角形,
理由是:
连接AM,
∵∠8=30°,∠9=60°,
∴∠DAB=180°﹣30°﹣60°=90°,
∵M为BD中点,AD=AB(已知两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起),
∴AM⊥BD(等腰三角形底边的高也平分底边),
AM=BM=DM(直角三角形斜边上中线等于斜边的一半),
∴∠5=∠6=(180°﹣90°)=45°,∠4=∠BDA=45°,
∵∠7=30°,
∴∠MBC=45°+30°=75°,
同理∠MAE=75°=∠MBC,
在△BCM和△AEM中,
,
∴△BCM≌△AEM(SAS),
∴EM=CM,∠3=∠2,
∵AM⊥BD,
∴∠1+∠2=90°,
∴∠1+∠3=90°,
∴△EMC是等腰直角三角形.
科目:初中数学 来源: 题型:
【题目】在边长为1的正方形网格中
作出关于直线MN对称的;
若经过图形平移得到,当点A的坐标是时,请建立适当的直角坐标系,分别写出点,,的坐标.
【答案】(1)见解析;(2),,.
【解析】
(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
(2)直接利用A点坐标得出平面直角坐标系,进而得出各点坐标.
解:如图所示:,即为所求;
点,,.
【点睛】
此题主要考查了轴对称变换以及平移变换、根据点的坐标建立平面直角坐标系,正确得出对应点位置是解题关键.
【题型】解答题
【结束】
17
【题目】计算:;计算:;解方程组:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,G是边长为8的正方形ABCD的边BC上的一点,矩形DEFG的边EF过点A,GD=10.
(1)求FG的长;
(2)直接写出图中与△BHG相似的所有三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a﹣b+c<0,③2a+b=0,④b2﹣4ac>0,其中正确结论个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣ x+6分别交x轴、y轴于A、B两点,抛物线y=﹣ x2+8,与y轴交于点D,点P是抛物线在第一象限部分上的一动点,过点P作PC⊥x轴于点C.
(1)点A的坐标为 , 点D的坐标为;
(2)探究发现:
①假设P与点D重合,则PB+PC=;(直接填写答案)
②试判断:对于任意一点P,PB+PC的值是否为定值?并说明理由;
(3)试判断△PAB的面积是否存在最大值?若存在,求出最大值,并求出此时点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD.∠1=∠2,∠3=∠4,试说明 AD∥BE,请你将下面解答过程填写完整.
解:∵AB∥CD,
∴∠4= ( )
∵∠3=∠4
∴∠3= (等量代换)
∵∠1=∠2
∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .
∴∠3= ( )
∴AD∥BE( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.
(1)求证:CE=CF;
(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=4,BC=3,点P从点A出发,以每秒4个单位长度的速度沿折线AC-CB运动,到点B停止.当点P不与△ABC的顶点重合时,过点P作其所在直角边的垂线交AB 于点Q,再以PQ为斜边作等腰直角三角形△PQR,且点R与△ABC的另一条直角边始终在PQ同侧,设△PQR与△ABC重叠部分图形的面积为S(平方单位).点P的运动时间为t(秒).
(1)求点P在AC边上时PQ的长,(用含t的代数式表示);
(2)求点R到AC、PQ所在直线的距离相等时t的取值范围;
(3)当点P在AC边上运动时,求S与t之间的函数关系式;
(4)直接写出点R落在△ABC高线上时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是 ,则点C的坐标是( )
A.(4,2)
B.(2,4)
C.( ,3)
D.(3, )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com