精英家教网 > 初中数学 > 题目详情

【题目】将图1,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,CBE为等腰三角形;再继续将纸片沿CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.

(1)如图2,正方形网格中的ABC能折叠成“叠加矩形”吗?如果能,请在图2中画出折痕;

(2)如图3,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且ABC折成的“叠加矩形”为正方形;

(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是   

(4)如果一个四边形一定能折成“叠加矩形”,那么它必须满足的条件是   

【答案】见解析

【解析】(1)图2中将三角形的三个角分别向三角形内部进行折叠即可;
(2)图3中只要使三角形一边上的高等于该边长即可;
(3)利用折叠后的两个重合的正方形可知,三角形一边长的一半和这一边上的高的一半都等于正方形的边长,所以三角形的一边和这边上的高应该相等;
(4)如果一个四边形能折叠成叠加矩形,可以将四边形的四个角分别向四边形内部折叠即可得到该结果,折痕应经过四边中点,而连接四边形各边中点得到矩形的话,该四边形的对角线应互相垂直.

(1)(2)

(3)三角形的一边长与该边上的高相等的直角三角形或锐角三角形;

(4)对角线互相垂直.(注:回答菱形、正方形不给分)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图 A 时测得某树(垂直于地面)的影长为 4 B 时又测得该树的影长为 16 若两次日 照的光线互相垂直则树的高度为_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】酒泉市教育局计划对全市八年级学生学习情况进行调查,随机从全市抽取城市和农村两组学生的期中数学成绩,每组10人进行对比分析.绘制统计图如下.根据图中信息,完成下列问题.

1)完成下表;

平均数

中位数

众数

方差

城市

农村

2)依据上表的信息谈谈你的看法.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦AD平分∠BACDEACAC的延长线于点E.

(1)求证:DE是⊙O的切线;

(2)AD=BCO半径为6,求∠CAD围成的阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在锐角ABC中,ABC=45°,高线AD、BE相交于点F.

(1)判断BF与AC的数量关系并说明理由;

(2)如图2,将ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DEAM时,判断NE与AC的数量关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店经销一种成本为每千克元的水产品,据市场分析,若按每千克元销售,一个月能售出,销售单价每涨(或跌)元,月销售量就减少(或增加),解答以下问题:

(1)当销售单价定位每千克元时,计算月销售量和月销售利润;

(2)商店想在月销售成本不超过元的情况下,使得月销售利润达到元,销售单价应为多少?

(3)商店要使得月销售利润达到最大,销售单价应为多少?此时利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是(  )

A. m=﹣3时,函数图象的顶点坐标是(

B. m>0时,函数图象截x轴所得的线段长度大于

C. m≠0时,函数图象经过同一个点

D. m<0时,函数在x>时,yx的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.

(1)求平均每次下调的百分率;

(2)某人准备以开盘均价购买一套100平方米的房子,开发商给予以下两种优惠方案供其选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费每平方米每月1.5元,请问哪种方案更优惠?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,分别垂直平分,交两点,相交于点.

(1)的周长为15 cm,求的长.

(2),求的度数.

查看答案和解析>>

同步练习册答案