精英家教网 > 初中数学 > 题目详情

【题目】大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是123,则m的值是( )
A.9
B.10
C.11
D.12

【答案】C
【解析】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,

∴m3有m个奇数,

∵2n+1=123,n=61,

∴奇数123是从3开始的第6112﹣1个奇数,

=54, =65,

∴第61个奇数是底数为11的数的立方分裂的奇数的其中一个,

即m=11.

故答案为:C.

根据规律得到底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数;得到方程,求出m的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).

(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;

(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小聪是个数学爱好者,他发现从1开始,连续几个奇数相加,和的变化规律如右表所示:

加数个数

连续奇数的和S

1

1=

2

1+3=22

3

1+3+5=32

4

1+3+5+7=42

5

1+3+5+7+9=52

n


(1)如果n=7,则S的值为
(2)求1+3+5+7+…+199的值;
(3)求13+15+17+…+79的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点P(1,-2)在平面直角坐标系中所在的象限是( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.

(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:
(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.
(3)在(2)的条件下,∠APE大小是否随着∠ACB的大小发生变化而发生变化,若变化写出变化规律,若不变,请求出∠APE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,点M是边BC的中点,AD平分∠BAC,BD⊥AD,BD的延长线交AC于点E,AB=12,AC=20.
(1)求证:BD=DE;
(2)求DM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
(1)小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=
问题迁移:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.

(2)当点P在A、B两点之间运动时,∠CPD、∠α、∠β之间有何数量关系?请说明理由.
(3)如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=6,AEBD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.
例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).
(1)点P(﹣1,6)的“2属派生点”P′的坐标为
(2)若点P的“3属派生点”P′的坐标为(6,2),则点P的坐标
(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.

查看答案和解析>>

同步练习册答案