精英家教网 > 初中数学 > 题目详情

【题目】为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).

(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;

(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.

【答案】(1);(2)61500元.

【解析】

试题分析:(1)根据图表的性质,可以得出P关于x的函数关系式和出x的取值范围.

(2)根据利润=亩数×每亩利润,可得①当0<x≤15时 ②当15<x<20时,利润的函数式,利用二次函数的性质即可解题;

试题解析:(1)观察图表的数量关系,可以得出P关于x的函数关系式为:

(2)利润=亩数×每亩利润,①当0<x≤15时,W=1800x+1380(40﹣x)+2400=420x+55200当x=15时,W有最大值,W最大=6300+55200=61500;

②当15<x<20,W=﹣20x+2100+1380(40﹣x)+2400=﹣1400x+59700﹣1400x+59700<61500x=15时有最大值为:61500元.

综上所述:当x=15时,W有最大值,W最大=61500

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于

A1500 B1000 C150 D500

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用“☆”定义一种新运算:对于任意有理数ab , 规定ab=ab2+2ab+a.
如:1☆3=1×32+2×1×3+1=16.
(1)求(﹣2)☆3的值;
(2)若( ☆3)☆(﹣ )=8,求a的值;
(3)若2☆x=m , ( x)☆3=n(其中x为有理数),试比较mn的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系xOy中的位置如图所示.(不写解答过程,直接写出结果)

(1)若△A1B1C1与△ABC关于原点O成中心对称,则点A1的坐标为

(2)将△ABC向右平移4个单位长度得到△A2B2C2,则点B2的坐标为

(3)将△ABC绕O点顺时针方向旋转90°,则点C走过的路径长为

(4)在x轴上找一点P,使PA+PB的值最小,则点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数(k0)

(1)当k=时,求这个二次函数的顶点坐标;

(2)求证:关于x的一元次方程有两个不相等的实数根;

(3)如图,该二次函数与x轴交于A、B两点(A点在B点的左侧),与y轴交于C点,P是y轴负半轴上一点,且OP=1,直线AP交BC于点Q,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解刚生产的10 000台电视机的寿命情况,从中抽取100台电视机进行实验,这个问题中的样本容量是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数为常数,且)的图象交于A(1,a)、B两点.

(1)求反比例函数的表达式及点B的坐标;

(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及PAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】顺次连接任意四边形的各边中点得到的四边形一定是(
A.正方形
B.矩形
C.菱形
D.平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是123,则m的值是( )
A.9
B.10
C.11
D.12

查看答案和解析>>

同步练习册答案