精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数的图象与反比例函数为常数,且)的图象交于A(1,a)、B两点.

(1)求反比例函数的表达式及点B的坐标;

(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及PAB的面积.

【答案】(1)B(3,1);(2)P,0)

【解析】

试题分析:(1)把点A(1,a)代入一次函数y=﹣x+4,即可得出a,再把点A坐标代入反比例函数,即可得出k,两个函数解析式联立求得点B坐标;

(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.

试题解析:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数,得k=3,∴反比例函数的表达式,两个函数解析式联立列方程组得,解得,∴点B坐标(3,1);

(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0),S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】三角形的三边分别为abc,且(a-b2+a2+b2-c22=0,则三角形的形状为————————————————

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:菱形ABCD的两条对角线AC,BD交于点O,BE∥AC,CE∥BD.
(1)若AC=8,BD=6,求AB的长;
(2)求证:四边形OBEC为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).

(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;

(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.

(1)用含m的代数式表示BE的长.

(2)当m=时,判断点D是否落在抛物线上,并说明理由.

(3)若AG∥y轴,交OB于点F,交BD于点G.

①若△DOE与△BGF的面积相等,求m的值.

②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】n边形的内角和是720°,则n的值是(  )

A.5B.6C.7D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上表示数 。并把这些数用“<”连接。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小聪是个数学爱好者,他发现从1开始,连续几个奇数相加,和的变化规律如右表所示:

加数个数

连续奇数的和S

1

1=

2

1+3=22

3

1+3+5=32

4

1+3+5+7=42

5

1+3+5+7+9=52

n


(1)如果n=7,则S的值为
(2)求1+3+5+7+…+199的值;
(3)求13+15+17+…+79的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
(1)小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=
问题迁移:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.

(2)当点P在A、B两点之间运动时,∠CPD、∠α、∠β之间有何数量关系?请说明理由.
(3)如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β之间的数量关系.

查看答案和解析>>

同步练习册答案