精英家教网 > 初中数学 > 题目详情
西宝高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录(单位:千米)为:+17,-9,+7,-15,-3,+11,-6,-8,+5,16.
(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?
(2)若汽车每千米平均耗油0.5升,已知每升油7.4元,求这次养护共耗油多少钱?
考点:正数和负数,有理数的混合运算
专题:
分析:先明确“正”和“负”所表示的意义,然后题意列出算式,根据有理数的运算法则计算即可.
解答:解:(1)+17-9+7-15-3+11-6-8+5+16=15
答:最后到达地点在出发点的西边,距离出发点15千米.
(2)7.4×0.5×(17+9+7+15+3+11+6+8+5+16)=3.7×97=358.9(元)
答:这次养护共耗油158.9元.
点评:本题考查了正、负的意义和有理数的运算,解题的关键是明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

-1+(-2)÷(-
2
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC与△ADE均为等边三角形,点A,E在BC的同侧.
(1)如图甲,点D在BC上,求证:CE+CD=AC;
(2)如图乙,若点D在BC的延长线上,其它条件不变,上述结论是否成立?若成立,请予以证明,若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的边AB为⊙O的直径,BC与圆交于点D,D为BC的中点,过D作DE⊥AC于E.
(1)求证:DE为⊙O的切线;
(2)若AB=13,CD=5,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=2x+2与x轴,y轴分别交于A,B两点,与反比例函数y=
k
x
(x>0)的图象交于点M,过M作MH⊥x轴于点H,且AB=BM,点N(a,1)在反比例函数y=
k
x
(x>0)的图象上.
(1)求k的值;
(2)求点N关于x轴的对称点N′的坐标;
(3)在x轴的正半轴上存在一点P,是的PM+PN的值最小,请求出点P的坐标;
(4)在y轴的正半轴上是否也存在一点Q,使得QM+QN的值最小?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

骰子是一种特别的数字立方体(如图),它要求相对两面的点数之和总是7,下面四幅图中可以折成符合要求的骰子的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.
(1)若∠B=30°,∠ACB=80°,求∠E的度数;
(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在半径为2,圆心角为90°的扇形ACB内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为
 
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知∠α=40°15′,则90°-α=
 

查看答案和解析>>

同步练习册答案