【题目】如图,在直角坐标系中,点A(0,4),B(-3,4),C(-6,0),动点P从点A出发以1个单位/秒的速度在y轴上向下运动,动点Q同时从点C出发以2个单位/秒的速度在x轴上向右运动,过点P作PD⊥y轴,交OB于D,连接DQ.当点P与点O重合时,两动点均停止运动.设运动的时间为t秒.
(1)当t=1时,求线段DP的长;
(2)连接CD,设△CDQ的面积为S,求S关于t的函数解析式,并求出S的最大值;
(3)运动过程中是否存在某一时刻,使△ODQ与△ABC相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.
【答案】(1);(2)S=,当时,S最大值=4;(3)和
【解析】试题分析:(1)先由题意得到OA=4,AB=3,CO=6,再求出当t=1时,AP、OP的长,最后根据PD⊥y轴,AB⊥y轴,结合平行线分线段成比例即可列比例式求解;
(2)作DE⊥CO于点E,分别用含t的字母表示出CQ、AP、OP,即可表示出DE的长,再根据三角形的面积公式即可得到S关于t的函数解析式,根据二次函数的性质即可求得S的最大值;
(3)分和两种情况,结合相似三角形的判定方法讨论即可.
(1)由A(0,4),B(-3,4),C(-6,0)可知OA=4,AB=3,CO=6,
当t=1时,AP=1,则OP=3,
∵PD⊥y轴,AB⊥y轴
∴PD∥AB
∴
∴
解得DP=;
(2)CQ=2t,AP=t,OP=4–t
作DE⊥CO于点E,则DE=OP=4–t
∴S==×2t×(4–t)=
当时,S最大值=4
(3)分两种情况讨论:
①当时,点Q在CO上运动(当t=3时,△ODQ不存在)
∵AB∥CO
∴∠BOC=∠ABO<∠ABC
可证得BO=BC
∴∠BOC=∠BCO>∠BCA
∵AB∥CO
∴∠BAC=∠ACO<∠BCO=∠BOC
∴当时,△ODQ与△ABC不可能相似。
②当时,点Q在x轴正半轴上运动,
延长AB,由AB∥CO可得∠FBC=∠BCO=∠BOC,
∴∠ABC=∠DOQ
OQ=,由DPAB可得OD=
当时,
,在内;
当时,
,在内;
∴存在和,使△ODQ与△ABC相似。
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的是( )
A.腰对应相等的两个等腰三角形全等;B.等腰三角形角平分线与中线重合;
C.底边和顶角分别对应相等的两个等腰三角形全等;D.形状相同的两个三角形全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,现有一动点P从点A出发,沿A→B→C→D→A的路径以每秒1个单位长度的速度匀速运动,设点P运动的时间为t,△APB的面积为S,则下列图象能大致反映S与t的函数关系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y1=﹣x+b过点A,且与直线y2=x+3相交于点B(m,2),直线y2=x+3与x轴相交于点C.
(1)求m的值.
(2)求△ABC的面积.
(3)根据图象,直接写出关于x的不等式﹣x+b>x+3的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】邻边不相等的矩形纸片,剪去一个最大的正方形,余下一个四边形,称为第一次操作,在余下的矩形纸片中再剪去一个最大的正方形,余下一个四边形,称为第二次操作,……依次类推,若第n次余下的四边形是正方形,则称原矩形为n阶方形,如图,矩形ABCD中,若AB=1,BC=2,则矩形ABCD为1阶方形.
(1)判断:邻边长分别为2和3的矩形是____阶方形;邻边长分别为3和4的矩形是____阶方形;
(2)已知矩形ABCD是3阶方形,其边长分别为1和a(a﹥1),请画出矩形ABCD及裁剪线的示意图,并在下方写出的a值;
(3)已知矩形ABCD的邻边长分别为a,b(a﹥b),满足a=5b+r,b=4r,请直接写出矩形ABCD是几阶方形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com