分析 根据在△ABC中,已知$AB=\sqrt{6}$,∠B=45°,∠C=60°,可以求得BC边上高AD的长和BC的长,从而可以求得△ABC的面积.
解答 解:作BC边上高AD交BC于点D,如下图所示:![]()
∵在△ABC中,已知$AB=\sqrt{6}$,∠B=45°,sinB=$\frac{AD}{AB}$
∴sin45°=$\frac{AD}{\sqrt{6}}$
解得,AD=$\sqrt{3}$
∴BD=AD=$\sqrt{3}$,
又∵∠C=60°,∠ADC=90°,AD=$\sqrt{3}$,tanC=$\frac{AD}{CD}$,
∴CD=$\frac{AD}{tan60°}=\frac{\sqrt{3}}{\sqrt{3}}=1$,
∴BC=BD+CD=$\sqrt{3}+1$,
∴${S}_{△ABC}=\frac{AD×BC}{2}=\frac{\sqrt{3}×(\sqrt{3}+1)}{2}$=$\frac{3+\sqrt{3}}{2}$,
即△ABC的面积是$\frac{3+\sqrt{3}}{2}$.
点评 本题考查解直角三角形,解题的关键是求出BC上的高AD的长和BC的长.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 周长相等的等边三角形都全等 | |
| B. | 周长相等的直角三角形都全等 | |
| C. | 如果两个三角形的两边及其中一边的对角对应相等,则这两个三角形全等 | |
| D. | 如果两个三角形的三个角对应相等,则这两个三角形全等 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com