分析 先根据题意画出图形,连接OA、OB,过O作OF⊥AB,由垂径可求出AF的长,根据特殊角的三角函数值可求出∠AOF的度数,由圆周角定理及圆内接四边形的性质即可求出答案.
解答
解:如图所示,
连接OA、OB,过O作OF⊥AB,则AF=$\frac{1}{2}$AB,∠AOF=$\frac{1}{2}$∠AOB,
∵OA=$\frac{1}{2}×6$=3,AB=3,
∴AF=$\frac{1}{2}$AB=$\frac{1}{2}$×3=$\frac{3}{2}$,
∴sin∠AOF=$\frac{AF}{OA}$=$\frac{1}{2}$,
∴∠AOF=30°,
∴∠AOB=2∠AOF=60°,
∴∠ADB=$\frac{1}{2}$∠AOB=$\frac{1}{2}$×60°=30°,
∴∠AEB=180°-30°=150°.
综上所述:弦AB所对的圆周角度数为30°或150°.
故答案为:30°或150°.
点评 本题考查的是圆周角定理及垂径定理,解答此题时要注意一条弦所对的圆周角有两个,这两个角互为补角.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y1>y2 | B. | y1<y2 | C. | y1=y2 | D. | 以上皆可能 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com