分析 (1)分两种情况:点P在AC上和点P在AB上,分别根据移动的路程,求得时间t的值即可;
(2)分两种情况:①若P在边AC上时,BC=CP=6cm,此时用的时间为6s;②若P在AB边上时,有三种可能:i若使BP=CB=6cm,此时AP=4cm,P运动的路程为4+8=12cm,用的时间为12时; ii)若CP=BC=6cm,过C作CD⊥AB于点D,根据面积法求得高CD=4.8cm,求出BP=2PD=7.2cm,得出P运动的路程为18-7.2=10.8cm,即可得出结果;ⅲ)若BP=CP,则∠PCB=∠B,证出PA=PC得出PA=PB=5cm,得出P的路程为13cm,即可得出结果;
(3)分两种情况:①当P、Q没相遇前:P点走过的路程为t,Q走过的路程为2t,根据题意得出方程,解方程即可;②当P、Q没相遇后:当P点在AB上,Q在AC上,则AP=t-8,AQ=2t-16,根据题意得出方程,解方程即可;即可得出结果.
解答
解:(1)如图2,作AB的垂直平分线DE,交AB于E,交AC于D,连接DB,则DA=DB,EA=EB,
∵△ABC中,∠C=90°,AB=10cm,BC=6cm,
∴AC=$\sqrt{1{0}^{2}-{6}^{2}}$=8cm,
①当点P与点D重合时,PA=PB,
此时,CP=1t=t,AP=8-t=BP,
∴在Rt△BCP中,t2+62=(8-t)2,![]()
解得t=$\frac{7}{4}$;
②当点P与点E重合时,PA=PB,
此时,PA=PB=$\frac{1}{2}$AB=5,
∴CA+AP=13,即1t=13,
解得t=13,
故当t=$\frac{7}{4}$或13s时,△BCP为等腰三角形;
(2)如图3,若P在边AC上时,BC=CP=6cm,
此时用的时间为6s,△BCP为等腰三角形;
若P在AB边上时,有三种情况:
①如图4,若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,
所以用的时间为12s,故t=12s时△BCP为等腰三角形;
②如图5,若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,
根据勾股定理求得BP=7.2cm,
所以P运动的路程为18-7.2=10.8cm,
∴t的时间为10.8s,△BCP为等腰三角形;
③如图6,若BP=CP时,则∠PCB=∠PBC,
∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,
∴∠ACP=∠CAP,
∴PA=PC
∴PA=PB=5cm
∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.![]()
∴当t=6s或13s或12s或 10.8s 时,△BCP为等腰三角形;
(3)分两种情况:①当P、Q没相遇前:如图7
P点走过的路程为tcm,Q走过的路程为2tcm,
∵直线PQ把△ABC的周长分成相等的两部分,
∴t+2t=12,
∴t=4s;
②当P、Q相遇后:如图8
当P点在AB上,Q在AC上,则AP=t-8,AQ=2t-16,
∵直线PQ把△ABC的周长分成相等的两部分,
∴t-8+2t-16=12,
∴t=12s,
故当t为4秒或12秒时,直线PQ把△ABC的周长分成相等的两部分.
点评 本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、勾股定理、三角形面积的计算;本题综合性强,熟练掌握等腰三角形的判定与性质,进行分类讨论是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com