精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)
(1)求抛物线的解析式和点A的坐标;
(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;
(3)如图2,已知直线y= x﹣ 分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.

【答案】
(1)

解:把B(1,0)代入y=ax2+2x﹣3,

可得a+2﹣3=0,解得a=1,

∴抛物线解析式为y=x2+2x﹣3,

令y=0,可得x2+2x﹣3=0,解得x=1或x=﹣3,

∴A点坐标为(﹣3,0).


(2)

解:若y=x平分∠APB,则∠APO=∠BPO,

如图1,若P点在x轴上方,PA与y轴交于点B′,

由于点P在直线y=x上,可知∠POB=∠POB′=45°,

在△BPO和△B′PO中

∴△BPO≌△B′PO(ASA),

∴BO=B′O=1,

设直线AP解析式为y=kx+b,把A、B′两点坐标代入可得

,解得

∴直线AP解析式为y= x+1,

联立 ,解得

∴P点坐标为( );

若P点在x轴下方时,同理可得△BOP≌△B′OP,

∴∠BPO=∠B′PO,

又∠B′PO在∠APO的内部,

∴∠APO≠∠BPO,即此时没有满足条件的P点,

综上可知P点坐标为( ).


(3)

解:如图2,作QH⊥CF,交CF于点H,

∵CF为y= x﹣

∴可求得C( ,0),F(0,﹣ ),

∴tan∠OFC= =

∵DQ∥y轴,

∴∠QDH=∠MFD=∠OFC,

∴tan∠HDQ=

不妨设DQ=t,DH= t,HQ= t,

∵△QDE是以DQ为腰的等腰三角形,

∴若DQ=DE,则SDEQ= DEHQ= × t×t= t2

若DQ=QE,则SDEQ= DEHQ= ×2DHHQ= × t= t2

t2 t2

∴当DQ=QE时△DEQ的面积比DQ=DE时大.

设Q点坐标为(x,x2+2x﹣3),则D(x, x﹣ ),

∵Q点在直线CF的下方,

∴DQ=t= x﹣ ﹣(x2+2x﹣3)=﹣x2 x+

当x=﹣ 时,tmax=3,

∴(SDEQmax= t2=

即以QD为腰的等腰三角形的面积最大值为


【解析】(1)把B点坐标代入抛物线解析式可求得a的值,可求得抛物线解析式,再令y=0,可解得相应方程的根,可求得A点坐标;
    (2)当点P在x轴上方时,连接AP交y轴于点B′,可证△OBP≌△OB′P,可求得B′坐标,利用待定系数法可求得直线AP的解析式,联立直线y=x,可求得P点坐标;当点P在x轴下方时,同理可求得∠BPO=∠B′PO,又∠B′PO在∠APO的内部,可知此时没有满足条件的点P;
    (3)过Q作QH⊥DE于点H,由直线CF的解析式可求得点C、F的坐标,结合条件可求得tan∠QDH,可分别用DQ表示出QH和DH的长,分DQ=DE和DQ=QE两种情况,分别用DQ的长表示出△QDE的面积,再设出点Q的坐标,利用二次函数的性质可求得△QDE的面积的最大值. 本题主要考查二次函数的综合应用,涉及知识点有待定系数法、角平分线的定义、全等三角形的判定和性质、三角形的面积、等腰三角形的性质、二次函数的性质及分类讨论等.在(2)中确定出直线AP的解析式是解题的关键,在(3)中利用DQ表示出△QDE的面积是解题的关键.本题考查知识点较多,综合性较强,计算量大,难度较大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4)
(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1
(2)以点O为位似中心,将△ABC缩小为原来的 ,得到△A2B2C2 , 请在y轴右侧画出△A2B2C2 , 并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,AC=3,BC=4,点OBC中点,将ABC绕点O旋转得AB' C,则在旋转过程中点AC两点间的最大距离是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将ABCO绕点A逆时针旋转得到ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点D在反比例函数y= (x<0)的图象上,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个y关于x的函数同时满足两个条件:①图象过(2,1)点;②当x>0时,y随x的增大而减小.这个函数解析式为 . (写出一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中的每个小正方形边长都是1.请同学们利用网格线进行画图:

(1)在图1中,画一个顶点为格点、面积为5的正方形;

(2)在图2中,已知线段AB、CD,画线段EF,使它与AB、CD组成轴对称图形;(要求画出所有符合题意的线段)

(3)在图3中,找一格点D,满足:CB、CA的距离相等;到点A、C的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1、2之间的数量关系为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表:

x(页)

100

200

400

1000

y(元)

40

80

160

400

(1)若y与x满足初中学过的某一函数关系,求函数的解析式;

(2)现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费,则乙复印社每月收费y(元)与复印页数x(页)的函数关系为________________

(3)学校准备复印材料1000页,应选择哪个复印社比较优惠?

查看答案和解析>>

同步练习册答案