精英家教网 > 初中数学 > 题目详情

【题目】在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,求旗杆的高度OM和玛丽在荡绳索过程中离地面的最低点的高度MN.

【答案】2m

【解析】

试题分析:首先得出AOE≌△OBF(AAS),进而得出CD的长,进而求出OM,MN的长即可.

解:作AEOM,BFOM

∵∠AOE+BOF=BOF+OBF=90°

∴∠AOE=OBF

AOEOBF中,

∴△AOE≌△OBF(AAS),

OE=BF,AE=OF

即OE+OF=AE+BF=CD=17(m)

EF=EM﹣FM=AC﹣BD=10﹣3=7(m),

2EO+EF=17,

则2×EO=10,

所以OE=5m,OF=12m,

所以OM=OF+FM=15m

又因为由勾股定理得ON=OA=13,

所以MN=15﹣13=2(m).

答:旗杆的高度OM为15米,玛丽在荡绳索过程中离地面的最低点的高度MN为2米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2

(1)若x12+x22=6,求m值;

(2)令T=,求T的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形中,,线段上有动点,过作直线边于点,并使得

重合时,求的长;

在直线上是否存在一点,使得是等腰直角三角形?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=5,AC=13,BC边上的中线AD=6,则ABD的面积是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,锐角中,,若想找一点P,使得互补,甲、乙、丙三人作法分别如下:

甲:以B为圆心,AB长为半径画弧交ACP点,则P即为所求;

乙:分别以BC为圆心,ABAC长为半径画弧交于P点,则P即为所求;

丙:作BC的垂直平分线和的平分线,两线交于P点,则P即为所求.

对于甲、乙、丙三人的作法,下列叙述正确的是  

A. 三人皆正确B. 甲、丙正确,乙错误

C. 甲正确,乙、丙错误D. 甲错误,乙、丙正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,,垂足为的中点.现有下列四个结论:①②四边形的面积等于.其中正确结论的个数为(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形的边长为厘米,对角线上的两个动点.点从点,点从点同时出发,沿对角线以厘米/秒的相同速度运动,过的直角边于,过的直角边于,连接.设围成的图形面积为围成的图形面积为这里规定:线段的面积为到达到达停止.若的运动时间为秒,解答下列问题:

如图,判断四边形是什么四边形,并证明;

时,求为何值时,

的和,试用的代数式表示.(如图为备用图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.

(1)请你通过列表(或画树状图)计算甲获胜的概率

(2)你认为这个游戏公平吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,B=30°,边AB的垂直平分线DEAB于点E,交BC于点D.CD=3,则BC的长为(

A. 6 B. 9 C. 6 D. 3

查看答案和解析>>

同步练习册答案