【题目】设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2,
(1)若x12+x22=6,求m值;
(2)令T=,求T的取值范围.
【答案】(1)m=;(2)0<T≤4且T≠2.
【解析】
由方程方程由两个不相等的实数根求得﹣1≤m<1,根据根与系数的关系可得x1+x2=4﹣2m,x1x2=m2﹣3m+3;(1)把x12+x22=6化为(x1+x2)2﹣2x1x2=6,代入解方程求得m的值,根据﹣1≤m<1对方程的解进行取舍;(2)把T化简为2﹣2m,结合﹣1≤m<1且m≠0即可求T得取值范围.
∵方程由两个不相等的实数根,
所以△=[2(m﹣2)]2﹣4(m2﹣3m+3)
=﹣4m+4>0,
所以m<1,又∵m是不小于﹣1的实数,
∴﹣1≤m<1
∴x1+x2=﹣2(m﹣2)=4﹣2m,x1x2=m2﹣3m+3;
(1)∵x12+x22=6,
∴(x1+x2)2﹣2x1x2=6,
即(4﹣2m)2﹣2(m2﹣3m+3)=6
整理,得m2﹣5m+2=0
解得m=;
∵﹣1≤m<1
所以m=.
(2)T=+
=
=
=
=
=2﹣2m.
∵﹣1≤m<1且m≠0
所以0<2﹣2m≤4且m≠0
即0<T≤4且T≠2.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为E,DE与AB相交于点F.试探究线段BE与DF的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次“构造勾股数”的探究性学习中,老师给出了下表:
其中m、n为正整数,且m>n.
(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.
(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=___,b=___,c=___.
(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+5与双曲线(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线(x>0)的交点有( )
A. 0个B. 1个C. 2个D. 0个,或1个,或2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩,测试规则为连续接球10个,每垫球到位1个记1分.
运动员甲测试成绩表
测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成绩(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)小明将三人的成绩整理后制作了下面的表格:
平均数 | 中位数 | 众数 | 方差 | |
甲 | 7 | b | 7 | 0.8 |
乙 | 7 | 7 | d | 0.4 |
丙 | a | c | e | 0.81 |
则表中a= ,b= ,c= ,d= ,e= .
(2)若在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?请作出简要分析.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,求旗杆的高度OM和玛丽在荡绳索过程中离地面的最低点的高度MN.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com