如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x 2-2x-8=0的两个根.
1.求这条抛物线的解析式;
2.点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;
3.探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
![]()
1.∵x2-2x-8=0 ,∴(x-4)(x+2)=0 .∴x1=4,x2=-2.
∴A(4,0) ,B(-2,0)
又∵抛物线经过点A、B、C,设抛物线解析式为y=ax2+bx+c (a≠0),
∴
∴![]()
∴所求抛物线的解析式为y=-
x2 +x+4
2.设P点坐标为(m,0),过点E作EG⊥x轴于点G.
∵点B坐标为(-2,0),点A坐标(4,0),
∴AB=6, BP=m+2.
∵PE∥AC,
∴△BPE∽△BAC.
∴. ![]()
∴.
∴EG=![]()
∴S△CPE= S△CBP- S△EBP=
BP•CO-
BP•EG
∴
(m+2)(4-
).=-
m 2 +
m+
[来源:学|科|网]
∴
(m-1) 2 +3
又∵-2≤m≤4,
∴当m=1时,S△CPE有最大值3.
此时P点的坐标为(1,0).
3.存在Q点,其坐标为Q1(1,1),Q2
(1,
),Q3.
(1,-
),
Q4. (1,4+
),Q5. (1,4-
).
5分
【解析】(1)先通过解方程求出A,B两点的坐标,然后根据A,B,C三点的坐标,用待定系数法求出抛物线的解析式.
(2)本题要通过求△CPE的面积与P点横坐标的函数关系式而后根据函数的性质来求△CPE的面积的最大值以及对应的P的坐标.△CPE的面积无法直接表示出,可用△CPB和△BEP的面积差来求,设出P点的坐标,即可表示出BP的长,可通过相似三角形△BEP和△BAC求出.△BEP中BP边上的高,然后根据三角形面积计算方法即可得出△CEP的面积,然后根据上面分析的步骤即可求出所求的值.
(3)本题要分三种情况进行讨论:
①QC=BC,那么Q点的纵坐标就是C点的纵坐标减去或加上BC的长.由此可得出Q点的坐标.
②QB=BC,此时Q,C关于x轴对称,据此可求出Q点的坐标.
③QB=QC,Q点在BC的垂直平分线上,可通过相似三角形来求出QC的长,进而求出Q点的坐标.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| 10 |
| 10 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com