精英家教网 > 初中数学 > 题目详情

【题目】如图,△ACB和△DCE均为等腰三角形,点ADE在同一条直线上,BCAE相交于点O,连接BE,若∠CAB=CBA=CDE=CED=50°。

1)求证:AD=BE

2)求∠AEB。  

【答案】(1)详见解析;(2)∠AEB=80°.

【解析】

(1)欲证明AD=BE,只要证明ACD≌△BCE(SAS)即可.
(2)利用:“8字型可以证明∠OEB=ACO,即可解决问题.

(1)证明:

∵∠CAB=CBA=CDE=CED=50°,

CA=CBCD=CEACB=DCE=80°,∴∠ACD=BCE

ACDBCE中,

∴△ACD≌△BCESAS),

AD=BE

(2)解:∵△ACD≌△BCE∴∠CAD=CBE

∵∠COA=BOE∴∠ACO=BEO=80°,

∴∠AEB=80°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,把一个木制正方体的表面涂上颜色,然后将正方形分割成27个大小相同的小正方体,从这些小正方体中任意取出一个,求取出的小正方体;

1)只有一面涂有颜色的概率;

2)至少有两面涂有颜色的概率;

3)各个面都没有颜色的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学七年级有350名师生需要租车去野外进行拓展训练,现有AB两种类型号的车可供选择,已知1A型车和2B型车可载110人,2A型车和1B型车可载100人。

1AB型车每辆可分别载多少人?

2)要始每辆车都恰好坐满且正好运完这些师生,请问你有哪几种设计租车方案,请一一列举出来。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于实数定义两种新运算“※”和“”: (其中为常数,且,若对于平面直角坐标系中的点,有点的坐标与之对应,则称点的“衍生点”为点.例如:的“2衍生点”为,即

1)点的“3衍生点”的坐标为  

2)若点的“5衍生点” 的坐标为,求点的坐标;

3)若点的“衍生点”为点,且直线平行于轴,线段的长度为线段长度的3倍,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中∠A=60°AB=2cmAC=6cm,点PQ分别是边ABAC上的动点,点P从顶点A沿AB1cm/s的速度向点B运动,同时点Q从顶点C沿CA3cm/s的速度向点A运动,当点P到达点B时点PQ都停止运动.设运动的时间为t秒.

1)当t为何值时AP=AQ

2)是否存在某一时刻使得△APQ是直角三角形,若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣10),其部分图象如图所示,下列结论:

①4acb2

方程 的两个根是x1=1x2=3

③3a+c0

y0时,x的取值范围是﹣1≤x3

x0时,yx增大而增大

其中结论正确的个数是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在10×10的正方形网格中(每个小正方形的边长都为1个单位),△ABC的三个顶点都在格点上.建立如图所示的直角坐标系,

请在图中标出△ABC的外接圆的圆心P的位置,并填写: 圆心P的坐标:P ,

2)将△ABC绕点A逆时针旋转90°得到△ADE,画出图

形,并求△ABC扫过的图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为ts(0<t<4).

(1)求证:AF∥CE;

(2)当t为何值时,四边形EHFG为菱形;

(3)试探究:是否存在某个时刻t,使四边形EHFG为矩形,若存在,求出t的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中, °,点D是线段BC上的动点,将线段AD绕点A顺时针旋转50°,连接.已知AB2cmBDx cmBy cm

小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)

1通过取点、画图、测量,得到了的几组值,如下表:

0.5

0.7

1.0

1.5

2.0

2.3

1.7

1.3

1.1

0.7

0.9

1.1

2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.

3)结合画出的函数图象,解决问题:

线段的长度的最小值约为__________

,则的长度x的取值范围是_____________

查看答案和解析>>

同步练习册答案