精英家教网 > 初中数学 > 题目详情

【题目】如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.

示例:

则(1)用含的式子表示______

2)当时,______的值为______.

【答案】 2 1

【解析】

1)根据约定:上方相邻两数之和等于这两数下方箭头共同指向的数即可表示出m;

(2)解答此题先根据约定的方法可得到xymn之间的关系,可得x+2x=mm2x+3=nm+n=y,从而得到5x+3=y,然后将y的值代入可得关于x的方程,然后解之可得x,再根据2x+3=n可得n的值.

解:(1)有题意得,m=3x,

故答案为3x;

(2)由题意可得:x+2x=m2x+3=nm+n=y
x+2x+2x+3=m+n=y,
即:5x+3=y
y=7时,5x+3=7,
解得x=2,
n=2x+3=4+3=-1
故答案为-2;-1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标中,边长为1的正方形OABC的两顶点AC分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABCO点顺时针旋转,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x于点MBC边交x轴于点N(如图1).

(1)求边AB在旋转过程中所扫过的面积;

(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;

(3)设MN=m,当m为何值时△OMN的面积最小,最小值是多少?并直接写出此时△BMN内切圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9.

1)什么情况下,购会员证与不购证付一样的钱?

2)什么情况下,购会员证比不购证更合算?

3)什么情况下,不购会员证比购证更合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).

月均用水量(单位:t)

频数

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)请根据题中已有的信息补全频数分布表和频数分布直方图;

(2)如果家庭月均用水量大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?

(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水,应缴水费元.

1)写出之间的关系式;

2)某户居民若5月份用水16吨,应缴水费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:

1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?

3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.

4)粗略说一说易拉罐底面半径对所需铝质量的影响.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

出行方式

共享单车

步行

公交车

的士

私家车

根据以上信息,回答下列问题:

(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;

(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;

(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.

(1)求证:BE=CD;

(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

同步练习册答案