精英家教网 > 初中数学 > 题目详情

【题目】如图,等边沿射线向右平移到的位置,连接,则下列结论:互相平分;四边形是菱形;。其中正确的个数是(

A.1B.2C.3D.4

【答案】C

【解析】

先求出∠ACD=60°,继而可判断ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断④正确.

ABCDCE是等边三角形,

∴∠ACB=DCE=60°AC=CD

∴∠ACD=180°-ACB-DCE=60°

∴△ACD是等边三角形,

AD=AC=BC,故①正确;

由①可得AD=BC

AB=CD

∴四边形ABCD是平行四边形,

BDAC互相平分,故②正确;

由①可得AD=AC=CE=DE

故四边形ACED是菱形,即③正确.

综上可得①②③正确,共3个.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某种商品每天的销售利润(元)与销售单价(元)之间满足关系:,其图像如图所示.

1)销售单价为多少元时,这种商品每天的销售利润最大?最大利润为多少元?

2)若该商品每天的销售利润不低于12元,则销售单价的取值范围是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有一块直角三角形的铁皮.要在其中剪出一个面积尽可能大的正方形,小红和小亮各想出了甲、乙两种方案,请你帮忙算一算哪一种方案剪出的正方形面积较大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC是等腰三角形,顶角BAC=<600,D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转到AE,过点E作BC的平行线,交AB于点F,连接DE、BE、DF

(1)求证:BE=CD

(2)若ADBC,试判断四边形BDFE的形状,并给出证明。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A (8,0) ,B (0,6),动点M从点A出发沿AO以每秒2个单位长度的速度向原点O运动,同时动点N从点B出发沿折线BOOA向终点A运动,点Ny轴上的速度是每秒3个单位长度,在x轴上的速度是每秒4个单位长度,过点Mx轴的垂线交AB于点C,连结MNCN.设点M运动的时间为t(秒),MCN的面积为S(平方单位).

1)当t为何值时,点MN相遇?

2)求MCN的面积S(平方单位)与时间t(秒)的函数关系式;

3)当t为何值时,MCN是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9分)某批发商以每件50元的价格购进800T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元.

1)填表:(不需化简)

2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.

求出每天的销售利润与销售单价之间的函数关系式;

求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?

如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.

(1)如图,若点E上,FDE上的一点,DF=BE.求证:△ADF≌△ABE;

(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE﹣BE=AE.请你说明理由;

(3)如图,若点E上.写出线段DE、BE、AE之间的等量关系.(不必证明)

26

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:△ABC中,AM平分∠BAC,且AMBM于点M,已知AB8AC20M1M2Mn1把线段BM分成n等份(其中n为正整数),C1C2C2n1把线段BC分成2n等份,则M99C99_____

查看答案和解析>>

同步练习册答案