分析 (1)以A为圆心,以AD为半径交BC于点Q,作出∠DAQ的平分线,交CD于点P;
(2)利用△ABQ∽△QCP,根据相似三角形的对应边的比相等求得CP的值.
解答
解:(1)点P就是所求的图形;
(2)在直角△ABQ中,BQ=$\sqrt{A{Q}^{2}-A{B}^{2}}$=$\sqrt{1{3}^{2}-{5}^{2}}$=12,
则QC=BC-BQ=13-12=1,
∵∠AQP=∠ADC=90°,
∴∠AQB+∠PQC=90°,
又∵直角△ABQ中,∠BAQ+∠AQP=90°,
∴∠PQC=∠BAQ,
又∵∠B=∠C=90°,
∴△ABQ∽△QCP,
∴$\frac{CP}{BQ}$=$\frac{QC}{AB}$,即$\frac{CP}{12}$=$\frac{1}{5}$,
解得:CP=$\frac{12}{5}$.
点评 本题考查了矩形的性质以及相似三角形的判定与性质,正确应用相似三角形的判定与性质是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com