【题目】在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.
(1)求k的值;
(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.
①当b=﹣1时,直接写出区域W内的整点个数;
②若区域W内恰有4个整点,结合函数图象,求b的取值范围.
【答案】(1)4;(2) ①区域W内的整点有(1,0),(2,0),(3,0),有3个;②区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.
【解析】
(1)把A(4,1)代入中可得k的值;
(2)直线OA的解析式为:,可知直线l与OA平行,
①将b=-1时代入可得:直线解析式为,画图可得整点的个数;
②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.
(1)把A(4,1)代入y=得k=4×1=4;
(2)①当b=﹣1时,直线解析式为y=x﹣1,
解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),
而C(0,﹣1),
如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;
②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),
∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.
如图3,直线l在OA的上方时,
∵点(2,2)在函数y=(x>0)的图象G,
当直线l:y=+b过(1,2)时,b=,
当直线l:y=+b过(1,3)时,b=,
∴区域W内恰有4个整点,b的取值范围是<b≤.
综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.
科目:初中数学 来源: 题型:
【题目】某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:
p=,日销售量y(千克)与时间第t(天)之间的函数关系如图所示.
(1)求日销售量y与时间t的函数解析式;
(2)哪一天的日销售利润最大?最大利润是多少?
(3)该养殖户有多少天日销售利润不低于2 400元?
(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】赣州蓉江新区某汽车销售公司去年12月份销售新上市一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,今年2月月份该公司销售该型汽车达到450辆,并且去年12月到今年1月和今年1月到2月两次的增长率相同.
(1)求该公司销售该型汽车每次的增长率;
(2)若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:
x | …… | -2 | 0 | 3 | 4 | …… |
y | …… | -7 | m | n | -7 | …… |
则m、n的大小关系为( )
A. m>n B. m<n C. m=n D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017黑龙江省龙东地区)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.
(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)
(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系xOy中的位置如图所示.
(1)作△ABC关于点C成中心对称的△A1B1C1.
(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.
(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,函数y=2x+10的图像与函数y=(x<0)的图像相交于点A,并与x轴交于点C.点D是线段上一点,△ODC与△OAC的面积比为1:3.若将△ODC绕点O逆时针旋转得到△OD′C′,当点D′第一次落在函数y=(x<0)的图像上时,C′的横坐标为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,点P为CB延长线上点,连接DP交AC于点M、交AB于点N,已知DA=DC,∠ACD=45°.
(1)求证:四边形ABCD为正方形;
(2)连接BM,若N为AB的中点,求tan∠BMP的值;
(3)若MN=2,PN=6,求DM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转(0°<<120°)得到线段AD,连接CD.
(1)连接BD,如图1,若=80°,则∠BDC的度数为 ;(直接写出结果)
(2)如图2,以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED=90°,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com