精英家教网 > 初中数学 > 题目详情

【题目】填空,完成下列说理过程

如图,∠AOB90°,∠COD90°OA平分∠DOE,若∠BOC20°,求∠COE的度数

解:因为∠AOB90°

所以∠BOC+AOC90°

因为∠COD90°

所以∠AOD+AOC90°

所以∠BOC=∠AOD    

因为∠BOC20°

所以∠AOD20°

因为OA平分∠DOE

所以∠   2AOD   °    

所以∠COE=∠COD﹣∠DOE   °

【答案】同角的余角相等,DOE40°,角平分线的定义,50°

【解析】

根据余角的性质先求出∠AOD=BOC,再根据角平分线的定义求出∠DOE的度数,再根据COECODDOE即可求得答案.

因为AOB90°

所以BOC+∠AOC90°

因为COD90°

所以AOD+∠AOC90°

所以BOCAOD(同角的余角相等)

因为BOC20°

所以AOD20°

因为OA平分DOE

所以DOE2∠AOD40°(角平分线的定义)

所以COECODDOE50°

故答案为:同角的余角相等,DOE40°,角平分线的定义,50°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的弦,C是劣弧 的中点,连BO并延长交⊙O于点D,连接CA,CB,AB与CD交于点F,已知CF=1,FD=2.
(1)求CB的长;
(2)延长DB到E,使BE=OB,连接CE,求证:CE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,AC与BD是圆的直径,BE⊥AC,CF⊥BD,垂足分别为E、F
(1)四边形ABCD是什么特殊的四边形?请判断并说明理由;
(2)求证:BE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).

(1)图2中阴影部分的面积为   

(2)观察图2,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是 

(3)根据(2)中的结论,若x+y=5,xy=4,求x﹣y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果运回,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.

1)如何安排甲、乙两种货车可一次性地运到?有几种方案?

2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果商场应选择哪种方案,使运输费最少?最少运费是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EABC外部,点DBC边上,DEAC于点F,若∠C=E,∠BAD=CAEAC=AE

(1)求证:ABC≌△ADE

(2)若∠B=60°,求证:ABD是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接ADBD,其中BD交直线AP于点E.

(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;

(3)连结CE,写出AE, BE, CE之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:6sin60°﹣( 2 +|2﹣ |.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题。
(1)计算: .
(2)解不等式:4x+5≤2(x+1).

查看答案和解析>>

同步练习册答案