精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙O中,AC与BD是圆的直径,BE⊥AC,CF⊥BD,垂足分别为E、F
(1)四边形ABCD是什么特殊的四边形?请判断并说明理由;
(2)求证:BE=CF.

【答案】
(1)解:四边形ABCD是矩形.理由如下:

∵AC与BD是圆的直径,

∴∠ABC=∠ADC=90°,∠BAD=∠BCD=90°,

∴四边形ABCD是矩形;


(2)解:证明:∵BO=CO,

又∵BE⊥AC于E,CF⊥BD于F,

∴∠BEO=∠CFO=90°.

在△BOE和△COF中,

∴△BOE≌△COF(AAS).

∴BE=CF.


【解析】(1)由圆周角定理得出∠ABC=∠ADC=90°,∠BAD=∠BCD=90°,即可得出四边形ABCD是矩形;(2)由AAS证明△BOE≌△COF,得出对应边相等即可.
【考点精析】根据题目的已知条件,利用矩形的判定方法和圆周角定理的相关知识可以得到问题的答案,需要掌握有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,A 和 B 两地在一条河的两岸,现要在河上造一座桥 MN.桥造在何处才能使从 A 到 B 的路径 AMNB 最短?在下图中画出路径,不写画法但要说明理由.(假定河的两岸是平行的直线,桥要与河垂直.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.

(1)原来每小时处理污水量是多少m2

(2)若用新设备处理污水960m3,需要多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l与⊙O相离,过点O作OA⊥l,垂足为A,OA交⊙O于点B,点C在直线l上,连接CB并延长交⊙O于点D,在直线l上另取一点P,使∠PCD=∠PDC.
(1)求证:PD是⊙O的切线;
(2)若AC=1,AB=2,PD=6,求⊙O的半径r和△PCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式 12=1= ×1×2×(2+1)
12+22= ×2×3×(4+1)
12+22+32= ×3×4×(6+1)
12+22+32+42= ×4×5×(8+1)…
可以推测12+22+32+…+n2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BD=DG.

下列结论:(1)DE=DF;(2)∠B=∠DGF; (3)AB<AF+FG;(4)若△ABD和△ADG的面积分别是50和38,则△DFG的面积是8.其中一定正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A,B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y= x+4,与x轴相交于点D.

(1)求抛物线的解析式;
(2)判断直线l与⊙E的位置关系,并说明理由;
(3)动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空,完成下列说理过程

如图,∠AOB90°,∠COD90°OA平分∠DOE,若∠BOC20°,求∠COE的度数

解:因为∠AOB90°

所以∠BOC+AOC90°

因为∠COD90°

所以∠AOD+AOC90°

所以∠BOC=∠AOD    

因为∠BOC20°

所以∠AOD20°

因为OA平分∠DOE

所以∠   2AOD   °    

所以∠COE=∠COD﹣∠DOE   °

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABEF,则∠ACDE满足的数量关系是(

A. ACDE=360°

B. ADCE

C. ACDE=180°

D. ECDA=90°

查看答案和解析>>

同步练习册答案