精英家教网 > 初中数学 > 题目详情

【题目】如图,A 和 B 两地在一条河的两岸,现要在河上造一座桥 MN.桥造在何处才能使从 A 到 B 的路径 AMNB 最短?在下图中画出路径,不写画法但要说明理由.(假定河的两岸是平行的直线,桥要与河垂直.)

【答案】见解析

【解析】

虽然A、B两点在河两侧但连接AB的线段不垂直于河岸.关键在于使AM+BN最短,但AMBN未连起来,要利用线段公理就要想办法使MN重合起来,利用平行四边形的特征可以实现这一目的.

解:如图,作 BB'垂直于河岸 GH,使 BB′等于河宽, 连接 AB′,与河岸 EF 相交于 M,作 MNGH,

MNBB′ MN=BB′,

于是 MNBB′为平行四边形,故 NB=MB′.

根据两点之间线段最短”,AB′最短,即 AM+BN 最短.

故桥建立在 MN 处符合题意.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在日历上,我们可以发现其中某些数满足一定的规律.如图是201812月份的日历,我们任意选择其中所示的十字形部分,将每个部分中间数的左右两数,上下两数分别相乘,再把所得的结果相减.

(1)计算:11×13-5×19;16×18–10×24;(直接写结果)

(2)请你用整式的运算对以上的规律加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成. 现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?

反思:应用二元一次方程组解应用题时,要注意解题的步骤,解、设、答一个不能少,而由于未知数有两个,则必须根据题意找出两个等量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按要求画图,并回答问题:

如图,在同一平面内有三点ABC

(1)画直线AC

(2)画射线CB

(3)过点B作直线AC的垂线BD,垂足为D

(4)画线段AB及线段AB的中点E,连接DE

(5)通过画图和测量,与线段DE长度相等的线段有__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角板ABC中,∠ACB=90°,∠A=30°,AC=6,将三角板ABC绕点C逆时针旋转,当起始位置时的点B恰好落在边A1B1上时,A1B的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上有点a,b,c三点

(1)用“<”将a,b,c连接起来.

(2)b﹣a   1(填“<”“>”,“=”)

(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|

(4)用含a,b的式子表示下列的最小值:

①|x﹣a|+|x﹣b|的最小值为   

②|x﹣a|+|x﹣b|+|x+1|的最小值为   

③|x﹣a|+|x﹣b|+|x﹣c|的最小值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以 个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.

(1)求抛物线的解析式;
(2)当t为何值时,△APQ为直角三角形;
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的弦,C是劣弧 的中点,连BO并延长交⊙O于点D,连接CA,CB,AB与CD交于点F,已知CF=1,FD=2.
(1)求CB的长;
(2)延长DB到E,使BE=OB,连接CE,求证:CE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,AC与BD是圆的直径,BE⊥AC,CF⊥BD,垂足分别为E、F
(1)四边形ABCD是什么特殊的四边形?请判断并说明理由;
(2)求证:BE=CF.

查看答案和解析>>

同步练习册答案