精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,不添加辅助线,请你探究△BDE与△DCE中的边、角、面积之间的数量关系,并选择两种写出你的结论:
 
 
分析:根据等腰三角形中三线合一的性质知,可推出一些边角关系.
解答:解:∵△ABC是等边三角形,BD是中线
∴∠DBC=
1
2
∠ABC=30°,CD=
1
2
AC=
1
2
BC,∠BDC=90°,∠C=60°
∴∠ACE=180°-60°=120°
∵CE=CD
∴BE=BC+CE=3CE,∠E=∠CDE=
180°-120°
2
=30°=∠DBC
∴△CED∽△EDB,∠ECD=∠BDE
∵tan∠BCD=BD:CD=tan60°=
3

∴S△BDE:S△ECD=BD2:CD2=3
即:S△BDE=3S△ECD
点评:本题是开放题,答案不唯一,利用了:①等腰三角形的三线合一的性质,②等边三角形的性质,相似三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A精英家教网的坐标为(-1,0).
(1)写出B,C,D三点的坐标;
(2)若抛物线y=ax2+bx+c经过B,C,D三点,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,AB交⊙O于点D,DE⊥AC于点E.
(1)求证:DE为⊙O的切线.
(2)已知DE=3,求:弧BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,
求证:△CMN是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄城区模拟)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)求证:△BCE≌△FDC;
(2)判断四边形ABDF是怎样的四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区二模)如图,已知△ABC是等边三角形,点D是BC延长线上的一个动点,以AD为边作等边△ADE,过点E作BC的平行线,分别交AB,AC的延长线于点F,G,联结BE.
(1)求证:△AEB≌△ADC;
(2)如果BC=CD,判断四边形BCGE的形状,并说明理由.

查看答案和解析>>

同步练习册答案