精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,ABCD的顶点BCx轴上,AD两点分别在反比例函数y=﹣x0)与yx0)的图象上,若ABCD的面积为4,则k的值为:_____

【答案】1

【解析】

连接OAOD,如图,利用平行四边形的性质得AD垂直y轴,则利用反比例函数的比例系数k的几何意义得到SOAESODE,所以SOAD+,,然后根据平行四边形的面积公式可得到ABCD的面积=2SOAD4,即可求出k的值.

连接OAOD,如图,

∵四边形ABCD为平行四边形,

AD垂直y轴,

SOAE×|3|SODE×|k|

SOAD+

ABCD的面积=2SOAD4

3+|k|4

k0

解得k1

故答案为1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC在边长为l的正方形网格中如图所示.

①以点C为位似中心,作出ABC的位似图形A1B1C,使其位似比为12.且A1B1C位于点C的异侧,并表示出A1的坐标.

②作出ABC绕点C顺时针旋转90°后的图形A2B2C

③在②的条件下求出点B经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是由边长为1的小正方形组成的网格图,线段ABBCBDDE的端点均在格点上,线段ABDE交于点F,则DF的长度为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于二次函数yx23x+2和一次函数y=﹣2x+4,把ytx23x+2+1t)(﹣2x+4)称为这两个函数的再生二次函数,其中t是不为零的实数,其图象记作抛物线L.现有点A20)和抛物线L上的点B(﹣1n),请完成下列任务:

(尝试)

1)当t2时,抛物线ytx23x+2+1t)(﹣2x+4)的顶点坐标为   

2)判断点A是否在抛物线L上;

3)求n的值;

(发现)

通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为   

(应用)

二次函数y=﹣3x2+5x+2是二次函数yx23x+2和一次函数y=﹣2x+4的一个再生二次函数吗?如果是,求出t的值;如果不是,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△OAP是等腰直角三角形,∠OAP90°,点A在第四象限,点P坐标为(80),抛物线yax2+bx+c经过原点OAP两点.

1)求抛物线的函数关系式.

2)点By轴正半轴上一点,连接AB,过点BAB的垂线交抛物线于CD两点,且BCAB,求点B坐标;

3)在(2)的条件下,点M是线段BC上一点,过点Mx轴的垂线交抛物线于点N,求△CBN面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.

(感知)如图①,过点AAFBEBC于点F.易证ABF≌△BCE.(不需要证明)

(探究)如图②,取BE的中点M,过点MFGBEBC于点F,交AD于点G.

(1)求证:BE=FG.

(2)连结CM,若CM=1,则FG的长为   

(应用)如图③,取BE的中点M,连结CM.过点CCGBEAD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国高铁近年来用震惊世界的速度不断发展,已成为当代中国一张耀眼的“国家名片”。修建高铁时常常要逢山开道、遇水搭桥。如图,某高铁在修建时需打通一直线隧道MN(MN为山的两侧),工程人员为了计算MN两点之间的直线距离,选择了在测量点ABC进行测量,点BC分别在AMAN上,现测得AM=1200米,AN=2000米,AB=30米,BC=45米,AC=18米,求直线隧道MN的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线(a≠0)经过A(-10),B(20)两点,与y轴交于点C

(1)求抛物线的解析式及顶点D的坐标;

(2)点P在抛物线的对称轴上,△ACP的周长最小时,求出点P的坐标;

(3) 点N在抛物线上点M在抛物线的对称轴上,是否存在以点N为直角顶点的RtDNMRt△BOC相似,若存在,请求出所有符合条件的点N的坐标若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂家一种摩托车如图所示,它的大灯A射出的光线ABAC与地面MN的夹角分别为10°

1)该车大灯照亮地面的宽度BC1.4m,求大灯A与地面距离约是多少?

2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,突然遇到危险情况,立即刹车直到摩托车停止,在这个过程刹车距离是m,请判断(1)中的该车大灯A的地面高度是否能满足最小安全距离的要去,若不能该如何调整A的高度?(参考数据:sin8°≈tan8°≈sin10°≈tan10°≈

查看答案和解析>>

同步练习册答案