【题目】某厂家一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°.
(1)该车大灯照亮地面的宽度BC是1.4m,求大灯A与地面距离约是多少?
(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,突然遇到危险情况,立即刹车直到摩托车停止,在这个过程刹车距离是m,请判断(1)中的该车大灯A的地面高度是否能满足最小安全距离的要去,若不能该如何调整A的高度?(参考数据:sin8°≈,tan8°≈,sin10°≈,tan10°≈)
【答案】(1)大灯A与地面距离约是1m;(2)该车大灯的设计不能满足最小安全距离的要求,应该调整到A的高度为1.28m.
【解析】
(1)过A作AD⊥MN于D,设AD=xm,解直角三角形求出BD,CD,根据BC=1.4m构建方程即可解问题.
(2)本题可先计算出最小安全距离是多少,然后与大灯能照到的最远距离进行比较,即可得出是否合格的结论;再利用三角函数求出满足最小安全距离时AD的值即可
(1)过A作AD⊥MN于点D,设AD=xm,
由题意得:∠ACD=10°,∠ABD=8°,
在Rt△ACD中,tan∠ACD= ,
解得:CD=5.6x(m),
在Rt△ABD中,tan∠ABD=,
解得:BD=7x(m),
∴BC=7x﹣5.6x=1.4(m),
∴x=1,
答:大灯A与地面距离约是1m;
(2)该车大灯的设计不能满足最小安全距离的要求,
∵以60 km/h的速度驾驶,
∴速度可以化为:m/s,
则最小安全距离为:×0.2+=8(m),
∵大灯能照到的最远距离是BD=7m,
∴该车大灯的设计不能满足最小安全距离的要求,
当BD=8m时,,即
∴AD=1.28m,
∴应该调整到A的高度为1.28m.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,ABCD的顶点B,C在x轴上,A,D两点分别在反比例函数y=﹣(x<0)与y=(x>0)的图象上,若ABCD的面积为4,则k的值为:_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,由于各人的习惯不同,双手交叉时左手大拇指或右手大拇指在上是一个随机事件,曾老师对他任教的学生做了一个调查,统计结果如下表所示:
2011届 | 2012届 | 2013届 | 2014届 | 2015届 | |
参与实验的人数 | 106 | 110 | 98 | 104 | 112 |
右手大拇指在上的人数 | 54 | 57 | 49 | 51 | 56 |
频率 | 0.509 | 0.518 | 0.500 | 0.490 | 0.500 |
根据表格中的数据,你认为在这个随机事件中,右手大拇指在上的概率可以估计为( )
A. 0.6 B. 0.5 C. 0.45 D. 0.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.
(1)试求y与x之间的函数关系式.
(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?
(3)若要使某月的毛利润为1800元,售价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知,A(2,0),B(0,2),C(,0),点P(m,n)为直线AB上一动点,若∠OPC=30°,则m的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若∠B=30°,AC=6,OA=2,直接写出阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象与反比例函数的图象交于两点,点的坐标为
(1)求一次函数的解析式
(2)已知双曲线在第一象限上有一点到到轴的距离为3,求的面积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),图象与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的解析式;
(2)设抛物线对称轴与直线BC交于点D,连接AC、AD,点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F,问是否存在点E使△DEF为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com