精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求证:四边形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?

【答案】
(1)证明:∵AO=CO,BO=DO

∴四边形ABCD是平行四边形,

∴∠ABC=∠ADC,

∵∠ABC+∠ADC=180°,

∴∠ABC=∠ADC=90°,

∴四边形ABCD是矩形


(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,

∴∠FDC=36°,

∵DF⊥AC,

∴∠DCO=90°﹣36°=54°,

∵四边形ABCD是矩形,

∴OC=OD,

∴∠ODC=54°

∴∠BDF=∠ODC﹣∠FDC=18°


【解析】(1)先由对角线互相平分证明四边形ABCD是平行四边形,再由对角互补得出∠ABC=90°,即可得出结论;(2)先求出∠FDC=36°,再求出∠DCO=54°,然后求出∠ODC=54°,即可求出∠BDF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列各式中计算正确的是(  )

A. (x+y)2=x2+y2 B. (3x)2=6x2

C. (x32=x6 D. a2+a2=a4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中,正确的是( )

A.同一条弦所对的两条弧一定是等弧

B.长度相等的两条弧是等弧

C.正多边形一定是轴对称图形

D.三角形的外心到三角形各边的距离相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a<0、b>0且|a|>|b|,则a、b、﹣a、﹣b的大小关系是(
A.b>﹣a>a>﹣b
B.﹣b>a>﹣a>b
C.a>﹣b>﹣a>b
D.﹣a>b>﹣b>a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1=65°,∠2=65°,∠3=115°.试说明:DE∥BC,DF∥AB.根据图形,完成下面的推理:

因为∠1=65°,∠2=65°,

所以∠1=∠2.

所以______________    (         ).

因为AB与DE相交,

所以∠1=∠4(     ).

所以∠4=65°.

又因为∠3=115°,

所以∠3+∠4=180°.

所以        (          ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】市民惊叹西宁绿化颜值暴涨,2017年西宁市投资25160000元实施生态造林绿化工程建设项目,将25160000用科学记数法表示为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.

(1)如图①,当∠BAE=90°时,求证:CD=2AF;
(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是(  )

A.1.6
B.2.5
C.3
D.3.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(如图所示).下表是活动进行中的一组统计数据:

转动转盘

的次数n

100

150

200

500

800

1 000

落在铅笔

区域的次数m

68

111

136

345

564

701

落在铅笔

区域的频率

(1)计算并完成表格.

(2)请估计,n很大时,落在铅笔区域的频率将会接近多少?

(3)假如你去转动该转盘一次,你获得哪种奖品的机会大?

(4)在该转盘中,表示铅笔区域的扇形的圆心角约是多少?

查看答案和解析>>

同步练习册答案