【题目】如图,在直角坐标系中,已知点B(8,0),等边三角形OAB的顶点A在反比例函数y=的图象上.
(1)求反比例函数的表达式;
(2)把△OAB向右平移a个单位长度,对应得到△O′A′B′,当这个函数图象经过△O′A′B′一边的中点时,求a的值.
【答案】(1)y=;(2)a的值为2或6.
【解析】
(1)过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可;
(2)分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.
解:(1)如图1,过点A作AC⊥OB于点C,
∵△OAB是等边三角形,
∴∠AOB=60°,OC=OB,
∵B(8,0),
∴OB=OA=8,
∴OC=4,AC=.
把点A(4,)代入y=,得k=.
∴反比例函数的解析式为y=;
(2)分两种情况讨论:
①如图2,点D是A′B′的中点,过点D作DE⊥x轴于点E.
由题意得A′B′=8,∠A′B′E=60°,
在Rt△DEB′中,B′D=4,DE=,B′E=2.
∴O′E=6,
把y=代入y=,得x=8,
∴OE=8,
∴a=OO′=8﹣6=2;
②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.
由题意得A′O′=8,∠A′O′B′=60°,
在Rt△FO′H中,FH=,O′H=2.
把y=代入y=,得x=8,
∴OH=8,
∴a=OO′=8﹣2=6,
综上所述,a的值为2或6.
科目:初中数学 来源: 题型:
【题目】达州市图书馆今年4月23日开放以来,受到市民的广泛关注.5月底,八年级(1)班学生小颖对全班同学这一个多月来去新图书馆的次数做了调查统计,并制成了如图不完整的统计图表.
八年级(1)班学生去新图书馆的次数统计表
去图书馆的次数 | 0次 | 1次 | 2次 | 3次 | 4次及以上 |
人数 | 8 | 12 | a | 10 | 4 |
请你根据统计图表中的信息,解答下列问题:
(1)填空:a= ,b= ;
(2)求扇形统计图中“0次”的扇形所占圆心角的度数;
(3)从全班去过该图书馆的同学中随机抽取1人,谈谈对新图书馆的印象和感受.求恰好抽中去过“4次及以上”的同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数和的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画,P是上一动点,且P在第一象限内,过点P作的切线与x轴相交于点A,与y轴相交于点B.在上存在点Q,使得以Q、O、A、P为顶点的四边形是平行四边形,请写出Q点的坐标_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,弦CD⊥AB于点E.
(1)如图①,若CD=8,BE=2,求⊙O的半径;
(2)如图②,点G是上一点,AG的延长线与DC的延长线交于点F,求证:∠AGD=∠FGC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学考试中,小明有一道选择题(只能在四个选项A、B、C、D中选一个)不会做,便随机选了一个答案;小亮有两道选择题都不会做,他也随机选了两个答案.
(1)小明随机选的这个答案,答对的概率是 ;
(2)通过画树状图或列表法求小亮两题都答对概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.
(1)判断直线DE与半圆O的位置关系,并说明理由;
(2)①求证:CF=OC;
②若半圆O的半径为12,求阴影部分的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90,旋转后角的两边分别与射线BC交于点F和点G.
(1)探究线段BE、BF和DB之间的数量关系,写出结论并给出证明;
(2)当四边形ABCD为菱形,∠ADC=60,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120,旋转后角的两边分别与射线BC交于点F和点G.
①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;
②如图3,点E在线段AB的延长线上时,DE交射线BC于点M.若BE=1,AB=2,直接写出线段GM的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com